Department of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany.
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.
PLoS One. 2022 Jun 30;17(6):e0269709. doi: 10.1371/journal.pone.0269709. eCollection 2022.
In some situations it is necessary to use biometry from the fellow eye for lens power calculation prior to cataract surgery. The purpose of this study was to analyse the lateral differences in biometric measurements and their impact on the lens power calculation.
The analysis was based on a large dataset of 19,472 measurements of 9736 patients prior to cataract surgery with complete biometric data of both left and right eyes extracted from the IOLMaster 700. After randomly indexing the left or right eye as primary (P) and secondary (S), the differences between S and P eye were recorded and analysed (Keratometry (RSEQ), total keratometry (TRSEQ) and back surface power (BRSEQ)), axial length AL, corneal thickness CCT, anterior chamber depth ACD, lens thickness LT). Lens power was calculated with the Castrop formula for all P and S eyes, and the refraction was predicted using both the P and S eye biometry for the lens power calculation.
Lateral differences (S-P, 90% confidence interval) ranged between -0.64 to 0.63 dpt / -0.67 to 0.66 dpt / -0.12 to 0.12 dpt for RSEQ / TRSEQ / BRSEQ. The respective difference in AL / CCT / ACD / LT ranged between -0.46 to 0.43 mm / -0.01 to 0.01 mm / -0.20 to 0.20 mm / -0.13 to 0.14 mm. The resulting difference in lens power and predicted refraction ranged between -2.02 to 2.00 dpt and -1.36 to 1.30 dpt where the biometry of the S eye is used instead of the P eye. The AL and RSEQ were identified as the most critical parameters where the biometry of the fellow eye is used.
Despite a strong similarity of both eyes, intraocular lens power calculation with fellow eye biometry could yield different results for the lens power and finally for the predicted refraction. In 10% of cases, the lens power derived from the S eye deviates by 2 dpt or more, resulting in a refraction deviation of 1.36 dpt or more.
在某些情况下,白内障手术前需要使用对侧眼的生物测量数据来计算晶状体的屈光力。本研究的目的是分析生物测量值的横向差异及其对晶状体屈光力计算的影响。
该分析基于从 IOLMaster 700 中提取的 9736 例患者的 19472 次完整双眼生物测量数据的大型数据集。将左眼或右眼随机索引为主要(P)眼和次要(S)眼后,记录并分析 S 眼与 P 眼之间的差异(角膜曲率计(RSEQ)、总角膜曲率计(TRSEQ)和后表面曲率计(BRSEQ))、眼轴(AL)、角膜厚度(CCT)、前房深度(ACD)、晶状体厚度(LT))。使用 Castrop 公式计算所有 P 眼和 S 眼的晶状体屈光力,并使用 P 眼和 S 眼的生物测量数据预测晶状体屈光力的折射。
横向差异(S-P,90%置信区间)在 RSEQ/TRSEQ/BRSEQ 中分别为-0.64 至 0.63 度/ -0.67 至 0.66 度/ -0.12 至 0.12 度。相应的 AL/CCT/ACD/LT 差值分别为-0.46 至 0.43 毫米/ -0.01 至 0.01 毫米/ -0.20 至 0.20 毫米/ -0.13 至 0.14 毫米。当使用 S 眼的生物测量数据而不是 P 眼的生物测量数据时,晶状体屈光力和预测折射的差值范围分别为-2.02 至 2.00 度和-1.36 至 1.30 度。AL 和 RSEQ 被确定为使用对侧眼生物测量数据时最关键的参数。
尽管双眼具有很强的相似性,但使用对侧眼的生物测量数据进行人工晶状体屈光力计算可能会导致晶状体屈光力和最终预测折射产生不同的结果。在 10%的情况下,来自 S 眼的晶状体屈光力偏差 2 个屈光度或更多,导致折射偏差 1.36 个屈光度或更多。