Langenbucher Achim, Szentmáry Nóra, Cayless Alan, Hoffmann Peter, Wendelstein Jascha, Pantanelli Seth
Department of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany.
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.
PLoS One. 2025 Jan 8;20(1):e0313574. doi: 10.1371/journal.pone.0313574. eCollection 2025.
To investigate different measures for corneal astigmatism in the context of reconstructed corneal astigmatism (recCP) as required to correct the pseudophakic eye, and to derive prediction models to map measured corneal astigmatism to recCP.
Retrospective single centre study of 509 eyes of 509 cataract patients with monofocal (MX60P) IOL. Corneal power measured with the IOLMaster 700 keratometry (IOLMK), and Galilei G4 keratometry (GK), total corneal power (TCP2), and Alpin's integrated front (CorT) and total corneal power (CorTTP). Feedforward shallow neural network (NET) and linear regression (REG) prediction models were derived to map the measured C0 and C45 power vector components to the respective recCP components.
Both the NET and REG models showed superior performance compared to a constant model correcting the centroid error. The mean squared prediction errors for the NET/REG models were: 0.21/0.33 dpt for IOLMK, 0.23/0.36 dpt for GK, 0.24/0.35 for TCP2, 0.23/0.39 dpt for CorT and 0.22/0.36 dpt for CorTTP respectively (training data) and 0.27/0.37 dpt for IOLMK, 0.26/0.37 dpt for GK, 0.38/0.42 dpt for TCP2, 0.35/0.36 dpt for CorT, and 0.44/0.45 dpt for CorTTP respectively on the test data. Crossvalidation with model optimisation on the training (and validation) data and performance check on the test data showed a slight overfitting especially with the NET models.
Measurement modalities for corneal astigmatism do not yield consistent results. On training data the NET models performed systematically better, but on the test data REG showed similar performance to NET with the advantage of easier implementation.
研究在矫正人工晶状体眼所需的重建角膜散光(recCP)背景下,针对角膜散光的不同测量方法,并推导预测模型,将测量的角膜散光映射到recCP。
对509例单焦点(MX60P)人工晶状体白内障患者的509只眼进行回顾性单中心研究。使用IOLMaster 700角膜曲率计(IOLMK)、伽利略G4角膜曲率计(GK)测量角膜屈光力,测量总角膜屈光力(TCP2),以及阿尔平综合前表面(CorT)和总角膜屈光力(CorTTP)。推导前馈浅层神经网络(NET)和线性回归(REG)预测模型,将测量的C0和C45屈光力矢量分量映射到各自的recCP分量。
与校正质心误差的常数模型相比,NET和REG模型均表现出更优的性能。NET/REG模型的均方预测误差分别为:IOLMK训练数据为0.21/0.33 dpt,GK为0.23/0.36 dpt,TCP2为0.24/0.35 dpt,CorT为0.23/0.39 dpt,CorTTP为0.22/0.36 dpt;测试数据中,IOLMK为0.27/0.37 dpt,GK为0.26/0.37 dpt,TCP2为0.38/0.42 dpt,CorT为0.35/0.36 dpt,CorTTP为0.44/0.45 dpt。在训练(和验证)数据上进行模型优化的交叉验证以及在测试数据上进行性能检查显示,尤其是NET模型存在轻微过拟合。
角膜散光的测量方式未产生一致的结果。在训练数据上,NET模型系统表现更好,但在测试数据上,REG与NET表现相似,且具有易于实现的优势。