Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
EBioMedicine. 2024 Aug;106:105228. doi: 10.1016/j.ebiom.2024.105228. Epub 2024 Jul 16.
It is uncertain which biological features underpin the response of rectal cancer (RC) to radiotherapy. No biomarker is currently in clinical use to select patients for treatment modifications.
We identified two cohorts of patients (total N = 249) with RC treated with neoadjuvant radiotherapy (45Gy/25) plus fluoropyrimidine. This discovery set included 57 cases with pathological complete response (pCR) to chemoradiotherapy (23%). Pre-treatment cancer biopsies were assessed using transcriptome-wide mRNA expression and targeted DNA sequencing for copy number and driver mutations. Biological candidate and machine learning (ML) approaches were used to identify predictors of pCR to radiotherapy independent of tumour stage. Findings were assessed in 107 cases from an independent validation set (GSE87211).
Three gene expression sets showed significant independent associations with pCR: Fibroblast-TGFβ Response Signature (F-TBRS) with radioresistance; and cytotoxic lymphocyte (CL) expression signature and consensus molecular subtype CMS1 with radiosensitivity. These associations were replicated in the validation cohort. In parallel, a gradient boosting machine model comprising the expression of 33 genes generated in the discovery cohort showed high performance in GSE87211 with 90% sensitivity, 86% specificity. Biological and ML signatures indicated similar mechanisms underlying radiation response, and showed better AUC and p-values than published transcriptomic signatures of radiation response in RC.
RCs responding completely to chemoradiotherapy (CRT) have biological characteristics of immune response and absence of immune inhibitory TGFβ signalling. These tumours may be identified with a potential biomarker based on a 33 gene expression signature. This could help select patients likely to respond to treatment with a primary radiotherapy approach as for anal cancer. Conversely, those with predicted radioresistance may be candidates for clinical trials evaluating addition of immune-oncology agents and stromal TGFβ signalling inhibition.
The Stratification in Colorectal Cancer Consortium (S:CORT) was funded by the Medical Research Council and Cancer Research UK (MR/M016587/1).
目前尚无可用于选择治疗方式调整的患者的生物标志物,尚不确定哪些生物学特征是直肠癌(RC)对放疗有反应的基础。
我们确定了两个接受新辅助放疗(45Gy/25)加氟嘧啶治疗的 RC 患者队列(总 N=249)。这个发现队列包括 57 例对放化疗有病理完全缓解(pCR)的病例(23%)。使用转录组范围的 mRNA 表达和靶向 DNA 测序评估治疗前癌症活检,以检测拷贝数和驱动突变。使用生物学候选物和机器学习(ML)方法来识别与肿瘤分期无关的放疗 pCR 的预测因子。在独立验证队列(GSE87211)中评估了 107 例发现的结果。
三个基因表达集与 pCR 具有显著的独立关联:成纤维细胞-TGFβ 反应特征(F-TBRS)与放射抵抗相关;细胞毒性淋巴细胞(CL)表达特征和共识分子亚型 CMS1 与放射敏感性相关。这些关联在验证队列中得到了复制。同时,在发现队列中生成的由 33 个基因组成的梯度提升机模型在 GSE87211 中表现出很高的性能,敏感性为 90%,特异性为 86%。生物学和 ML 特征表明,放射反应的潜在机制相似,并且比 RC 中已发表的放射反应转录组特征具有更好的 AUC 和 p 值。
完全对放化疗(CRT)有反应的 RC 具有免疫反应的生物学特征和缺乏免疫抑制 TGFβ 信号。这些肿瘤可以通过潜在的基于 33 个基因表达特征的生物标志物来识别。这有助于选择可能对主要放疗方法治疗有反应的患者,就像对肛门癌一样。相反,那些预测有放射抵抗的患者可能是评估添加免疫肿瘤学药物和基质 TGFβ 信号抑制的临床试验的候选者。
结直肠癌分层研究联盟(S:CORT)由英国医学研究理事会和英国癌症研究中心(MR/M016587/1)资助。