The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom.
Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
Clin Cancer Res. 2022 Sep 15;28(18):4056-4069. doi: 10.1158/1078-0432.CCR-22-1102.
Precise mechanism-based gene expression signatures (GES) have been developed in appropriate in vitro and in vivo model systems, to identify important cancer-related signaling processes. However, some GESs originally developed to represent specific disease processes, primarily with an epithelial cell focus, are being applied to heterogeneous tumor samples where the expression of the genes in the signature may no longer be epithelial-specific. Therefore, unknowingly, even small changes in tumor stroma percentage can directly influence GESs, undermining the intended mechanistic signaling.
Using colorectal cancer as an exemplar, we deployed numerous orthogonal profiling methodologies, including laser capture microdissection, flow cytometry, bulk and multiregional biopsy clinical samples, single-cell RNA sequencing and finally spatial transcriptomics, to perform a comprehensive assessment of the potential for the most widely used GESs to be influenced, or confounded, by stromal content in tumor tissue. To complement this work, we generated a freely-available resource, ConfoundR; https://confoundr.qub.ac.uk/, that enables users to test the extent of stromal influence on an unlimited number of the genes/signatures simultaneously across colorectal, breast, pancreatic, ovarian and prostate cancer datasets.
Findings presented here demonstrate the clear potential for misinterpretation of the meaning of GESs, due to widespread stromal influences, which in-turn can undermine faithful alignment between clinical samples and preclinical data/models, particularly cell lines and organoids, or tumor models not fully recapitulating the stromal and immune microenvironment.
Efforts to faithfully align preclinical models of disease using phenotypically-designed GESs must ensure that the signatures themselves remain representative of the same biology when applied to clinical samples.
已经在适当的体外和体内模型系统中开发了精确的基于机制的基因表达谱(GES),以识别重要的癌症相关信号过程。然而,最初为代表特定疾病过程而开发的一些 GES,主要以上皮细胞为重点,正在应用于异质肿瘤样本中,其中签名中的基因表达可能不再是上皮细胞特异性的。因此,即使肿瘤基质百分比发生微小变化,也会直接影响 GES,破坏预期的机制信号。
以结直肠癌为例,我们部署了多种正交分析方法,包括激光捕获显微解剖、流式细胞术、批量和多区域活检临床样本、单细胞 RNA 测序,最后是空间转录组学,对最广泛使用的 GES 被肿瘤组织中基质含量影响或混淆的潜力进行全面评估。为了补充这项工作,我们生成了一个免费的资源 ConfoundR;https://confoundr.qub.ac.uk/,它允许用户同时测试多个基因/特征在结直肠癌、乳腺癌、胰腺癌、卵巢癌和前列腺癌数据集中的基质影响程度。
这里提出的研究结果表明,由于广泛的基质影响,GES 的含义可能会被误解,这反过来又会破坏临床样本与临床前数据/模型之间的忠实对齐,特别是细胞系和类器官,或不完全再现基质和免疫微环境的肿瘤模型。
使用表型设计的 GES 忠实对齐疾病的临床前模型的努力必须确保签名本身在应用于临床样本时仍然代表相同的生物学。