Academy of Military Medical Sciences, Beijing, China.
Department of Computer Science and Engineering, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai, China.
Nat Commun. 2024 Jul 17;15(1):5997. doi: 10.1038/s41467-024-50426-6.
Cancer is rarely the straightforward consequence of an abnormality in a single gene, but rather reflects a complex interplay of many genes, represented as gene modules. Here, we leverage the recent advances of model-agnostic interpretation approach and develop CGMega, an explainable and graph attention-based deep learning framework to perform cancer gene module dissection. CGMega outperforms current approaches in cancer gene prediction, and it provides a promising approach to integrate multi-omics information. We apply CGMega to breast cancer cell line and acute myeloid leukemia (AML) patients, and we uncover the high-order gene module formed by ErbB family and tumor factors NRG1, PPM1A and DLG2. We identify 396 candidate AML genes, and observe the enrichment of either known AML genes or candidate AML genes in a single gene module. We also identify patient-specific AML genes and associated gene modules. Together, these results indicate that CGMega can be used to dissect cancer gene modules, and provide high-order mechanistic insights into cancer development and heterogeneity.
癌症很少是单个基因突变的直接后果,而是反映了许多基因的复杂相互作用,这些基因被表示为基因模块。在这里,我们利用无模型解释方法的最新进展,开发了 CGMega,这是一种基于解释和图注意力的深度学习框架,用于进行癌症基因模块剖析。CGMega 在癌症基因预测方面优于当前方法,并且为整合多组学信息提供了有前途的方法。我们将 CGMega 应用于乳腺癌细胞系和急性髓系白血病 (AML) 患者,发现了由 ErbB 家族和肿瘤因子 NRG1、PPM1A 和 DLG2 组成的高阶基因模块。我们鉴定了 396 个候选 AML 基因,并观察到单个基因模块中要么是已知的 AML 基因,要么是候选 AML 基因的富集。我们还鉴定了患者特异性 AML 基因和相关基因模块。总之,这些结果表明 CGMega 可用于剖析癌症基因模块,并为癌症的发生和异质性提供高阶的机制见解。