Suppr超能文献

母猪运动的深度学习姿势检测模型。

Deep learning pose detection model for sow locomotion.

机构信息

Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, Center for Comparative Studies in Sustainability, Health and Welfare, University of São Paulo, Pirassununga, SP, 13635-900, Brazil.

Robotics and Automation Group for Biosystems Engineering, Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900, Brazil.

出版信息

Sci Rep. 2024 Jul 16;14(1):16401. doi: 10.1038/s41598-024-62151-7.

Abstract

Lameness affects animal mobility, causing pain and discomfort. Lameness in early stages often goes undetected due to a lack of observation, precision, and reliability. Automated and non-invasive systems offer precision and detection ease and may improve animal welfare. This study was conducted to create a repository of images and videos of sows with different locomotion scores. Our goal is to develop a computer vision model for automatically identifying specific points on the sow's body. The automatic identification and ability to track specific body areas, will allow us to conduct kinematic studies with the aim of facilitating the detection of lameness using deep learning. The video database was collected on a pig farm with a scenario built to allow filming of sows in locomotion with different lameness scores. Two stereo cameras were used to record 2D videos images. Thirteen locomotion experts assessed the videos using the Locomotion Score System developed by Zinpro Corporation. From this annotated repository, computational models were trained and tested using the open-source deep learning-based animal pose tracking framework SLEAP (Social LEAP Estimates Animal Poses). The top-performing models were constructed using the LEAP architecture to accurately track 6 (lateral view) and 10 (dorsal view) skeleton keypoints. The architecture achieved average precisions values of 0.90 and 0.72, average distances of 6.83 and 11.37 in pixel, and similarities of 0.94 and 0.86 for the lateral and dorsal views, respectively. These computational models are proposed as a Precision Livestock Farming tool and method for identifying and estimating postures in pigs automatically and objectively. The 2D video image repository with different pig locomotion scores can be used as a tool for teaching and research. Based on our skeleton keypoint classification results, an automatic system could be developed. This could contribute to the objective assessment of locomotion scores in sows, improving their welfare.

摘要

跛行影响动物的活动能力,导致疼痛和不适。由于缺乏观察、精度和可靠性,早期的跛行往往无法被发现。自动化和非侵入性系统提供了精度和检测的便利性,并可能提高动物福利。本研究旨在创建一个具有不同运动评分的母猪图像和视频库。我们的目标是开发一种计算机视觉模型,用于自动识别母猪身体的特定点。自动识别和跟踪特定身体区域的能力,将使我们能够进行运动学研究,旨在利用深度学习方便地检测跛行。视频数据库是在一个猪圈里收集的,该猪圈的场景设计允许拍摄具有不同跛行评分的母猪的运动。使用两台立体摄像机记录二维视频图像。十三位运动专家使用 Zinpro 公司开发的运动评分系统评估视频。从这个标注的存储库中,使用开源基于深度学习的动物姿势跟踪框架 SLEAP(Social LEAP Estimates Animal Poses)训练和测试计算模型。使用 LEAP 架构构建的表现最佳的模型能够准确地跟踪 6 个(侧视图)和 10 个(背视图)骨骼关键点。该架构在侧视图和背视图上的平均精度值分别达到 0.90 和 0.72,平均距离分别为 6.83 和 11.37 像素,相似度分别为 0.94 和 0.86。这些计算模型被提议作为精准养殖工具和方法,用于自动和客观地识别和估计猪的姿势。具有不同猪运动评分的 2D 视频图像库可用作教学和研究工具。基于我们的骨骼关键点分类结果,可以开发一个自动系统。这有助于对母猪的运动评分进行客观评估,从而提高它们的福利。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c594/11252330/02113f73c236/41598_2024_62151_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验