Zhang Yihua, Peng Guyang, Li Shuankui, Wu Haijun, Chen Kaidong, Wang Jiandong, Zhao Zhihao, Lyu Tu, Yu Yuan, Zhang Chaohua, Zhang Yang, Ma Chuansheng, Guo Shengwu, Ding Xiangdong, Sun Jun, Liu Fusheng, Hu Lipeng
College of Materials Science and Engineering, Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
Nat Commun. 2024 Jul 16;15(1):5978. doi: 10.1038/s41467-024-50371-4.
In thermoelectric, phase interface engineering proves effective in reducing the lattice thermal conductivity via interface scattering and amplifying the density-of-states effective mass by energy filtering. However, the indiscriminate introduction of phase interfaces inevitably leads to diminished carrier mobility. Moreover, relying on a singular energy barrier is insufficient for comprehensive filtration of low-energy carriers throughout the entire temperature range. Addressing these challenges, we advocate the establishment of a composite phase interface using atomic layer deposition (ALD) technology. This design aims to effectively decouple the interrelated thermoelectric parameters in ZrNiSn. The engineered coherent dual-interface energy barriers substantially enhance the density-of-states effective mass across the entire temperature spectrum while preser carrier mobility. Simultaneously, the strong interface scattering on phonons is crucial for curtailing lattice thermal conductivity. Consequently, a 40-cycles TiO coating on ZrNiSnSb achieves an unprecedented zT value of 1.3 at 873 K. These findings deepen the understanding of coherent composite-phase interface engineering.
在热电领域,相界面工程已被证明可通过界面散射有效降低晶格热导率,并通过能量过滤提高态密度有效质量。然而,随意引入相界面不可避免地会导致载流子迁移率降低。此外,仅依靠单一的能量势垒不足以在整个温度范围内对低能载流子进行全面过滤。为应对这些挑战,我们提倡使用原子层沉积(ALD)技术建立复合相界面。该设计旨在有效解耦ZrNiSn中相互关联的热电参数。经过工程设计的相干双界面势垒在保持载流子迁移率的同时,在整个温度范围内显著提高了态密度有效质量。同时,对声子的强界面散射对于降低晶格热导率至关重要。因此,在ZrNiSnSb上沉积40个循环的TiO涂层在873 K时实现了前所未有的zT值1.3。这些发现加深了对相干复合相界面工程的理解。