Ramasekhar Gunisetty, Divya A, Jakeer Shaik, Reddy S R R, Algehyne Ebrahem A, Jawad Muhammad, Akgül Ali, Hassani Murad Khan
Department of Mathematics, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal, Andhra Pradesh, 518501, India.
Department of Mathematics, Jesse College (Affiliated to North West Bangalore), Bengaluru, 560016, India.
Sci Rep. 2024 Jul 16;14(1):16448. doi: 10.1038/s41598-024-65740-8.
The influence of boundary layer flow of heat transfer analysis on hybrid nanofluid across an extended cylinder is the main focus of the current research. In addition, the impressions of magnetohydrodynamic, porous medium and thermal radiation are part of this investigation. Arrogate similarity variables are employed to transform the governing modelled partial differential equations into a couple of highly nonlinear ordinary differential equations. A numerical approach based on the BVP Midrich scheme in MAPLE solver is employed for solution of the set of resulting ordinary differential equations and obtained results are compared with existing literature. The effect of active important physical parameters like Magnetic Field, Porosity parameter, Eckert number, Prandtl number and thermal radiation parameters on dimensionless velocity and energy fields are employed via graphs and tables. The velocity profile decreased by about 65% when the magnetic field parameter values increases from 0.5 to 1.5. On the other hand increased by 70% on energy profile. The energy profile enhanced by about 62% when the Radiation parameter values increases from 1.0 < Rd < 3.0. The current model may be applicable in real life practical implications of employing Engine oil-SWCNTs-MWCNTs-TiO nanofluids on cylinders encompass enhanced heat transfer efficiency, and extended component lifespan, energy savings, and environmental benefits. This kind of theoretical analysis may be used in daily life applications, such as engineering and automobile industries.
边界层流动对扩展圆柱周围混合纳米流体传热分析的影响是当前研究的主要重点。此外,磁流体动力学、多孔介质和热辐射的影响也是本研究的一部分。采用适当的相似变量将控制模型的偏微分方程转化为一组高度非线性的常微分方程。采用基于MAPLE求解器中BVP Midrich格式的数值方法求解所得的常微分方程组,并将所得结果与现有文献进行比较。通过图表展示了磁场、孔隙率参数、埃克特数、普朗特数和热辐射参数等重要物理参数对无量纲速度和能量场的影响。当磁场参数值从0.5增加到1.5时,速度分布下降了约65%。另一方面,能量分布增加了70%。当辐射参数值从1.0 < Rd < 3.0增加时,能量分布增强了约62%。当前模型可能适用于实际生活中在气缸上使用发动机油 - 单壁碳纳米管 - 多壁碳纳米管 - 二氧化钛纳米流体的实际应用,包括提高传热效率、延长部件寿命、节省能源和环境效益。这种理论分析可用于日常生活应用,如工程和汽车行业。