Suppr超能文献

使用自适应模拟退火算法无创重建生物组织内的热源。

Noninvasive reconstruction of internal heat source in biological tissue using adaptive simulated annealing algorithm.

机构信息

School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.

School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

出版信息

Sci Rep. 2024 Jul 16;14(1):16379. doi: 10.1038/s41598-024-67253-w.

Abstract

The heat distribution information of human lesions is of great value for disease analysis, diagnosis, and treatment. It is a typical inverse problem of heat conduction that deriving the distribution of internal heat sources from the temperature distribution on the body surface. This paper transforms such an inverse problem of bio-heat transfer into a direct one, thereby avoiding complex boundary conditions and regularization processes. To noninvasively reconstruct the internal heat source and its corresponding 3D temperature field in biological tissue, the adaptive simulated annealing (ASA) algorithm is used in the simulation module, where the position P(x, y, z) of point heat source in biological tissue and its corresponding temperature T are set as the optimization variables. Under a certain optimized sample, one can obtain the simulated temperature distributing on the surface of the module, then subtract the simulated temperature from the measured temperature of the same surface which was measured using a thermal infrared imager. If the sum of absolute values of the difference is smaller, it indicates that the current sample is closer to the true location and temperature of the heat source. When the values of optimization variables are determined, the corresponding 3D temperature field is also confirmed. The simulation results show the simulated position and temperature of the heat source are very approximate with those of the real experimental module. The method presented in this paper has enormous potential and promising prospects in clinical research and application, such as tumor hyperthermia, disease thermal diagnosis technology, etc.

摘要

人体病变的热分布信息对于疾病分析、诊断和治疗具有重要价值。它是热传导的一个典型反问题,即从体表温度分布推导出内部热源的分布。本文将生物传热的这种反问题转化为直接问题,从而避免了复杂的边界条件和正则化过程。为了非侵入式地重建生物组织内的内部热源及其相应的 3D 温度场,模拟模块中采用了自适应模拟退火(ASA)算法,其中生物组织内点热源的位置 P(x, y, z)及其相应的温度 T 被设置为优化变量。在给定的优化样本下,可以获得模块表面上的模拟温度分布,然后从使用热红外成像仪测量的同一表面的实测温度中减去模拟温度。如果差值的绝对值总和较小,则表示当前样本更接近热源的真实位置和温度。当优化变量的值确定时,相应的 3D 温度场也得到确认。模拟结果表明,热源的模拟位置和温度与真实实验模块非常接近。本文提出的方法在肿瘤热疗、疾病热诊断技术等临床研究和应用中具有巨大的潜力和广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d906/11252273/5b6c5bd4290c/41598_2024_67253_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验