Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA.
School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
Nat Methods. 2024 Sep;21(9):1736-1742. doi: 10.1038/s41592-024-02346-y. Epub 2024 Jul 16.
Neuroimaging data analysis relies on normalization to standard anatomical templates to resolve macroanatomical differences across brains. Existing human cortical surface templates sample locations unevenly because of distortions introduced by inflation of the folded cortex into a standard shape. Here we present the onavg template, which affords uniform sampling of the cortex. We created the onavg template based on openly available high-quality structural scans of 1,031 brains-25 times more than existing cortical templates. We optimized the vertex locations based on cortical anatomy, achieving an even distribution. We observed consistently higher multivariate pattern classification accuracies and representational geometry inter-participant correlations based on onavg than on other templates, and onavg only needs three-quarters as much data to achieve the same performance compared with other templates. The optimized sampling also reduces CPU time across algorithms by 1.3-22.4% due to less variation in the number of vertices in each searchlight.
神经影像学数据分析依赖于标准化到标准解剖模板,以解决大脑之间的宏观解剖差异。现有的人类皮质表面模板由于折叠皮质膨胀到标准形状而引入的扭曲,采样位置不均匀。在这里,我们提出了 onavg 模板,它提供了皮质的均匀采样。我们基于公开的高质量结构扫描创建了 onavg 模板,扫描的大脑数量是现有皮质模板的 25 倍。我们根据皮质解剖结构优化了顶点位置,实现了均匀的分布。我们观察到,基于 onavg 的多变量模式分类准确性和表示几何个体间相关性始终高于其他模板,并且与其他模板相比,onavg 只需要四分之三的数据即可实现相同的性能。由于每个搜索光中的顶点数量变化较小,优化后的采样还减少了算法的 CPU 时间 1.3-22.4%。