Li Gang, Wang Li, Shi Feng, Gilmore John H, Lin Weili, Shen Dinggang
Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, USA.
Department of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, USA.
Med Image Anal. 2015 Oct;25(1):22-36. doi: 10.1016/j.media.2015.04.005. Epub 2015 Apr 17.
In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development.
在神经影像学中,皮质表面图谱对于空间归一化、分析、可视化以及跨个体和不同研究的结果比较起着基础性作用。然而,现有的为成年人创建的皮质表面图谱并不适用于出生后前两年的婴儿大脑,这两年是高度折叠的大脑皮质出生后结构和功能发育最活跃的时期。因此,非常需要用于婴儿大脑的时空皮质表面图谱,但目前仍缺乏用于精确描绘早期动态脑发育的此类图谱。为了弥补这一重大差距,利用我们专门用于婴儿的基于皮质表面分析的计算流程以及在我们研究中心获取的独特的婴儿纵向磁共振成像(MRI)数据集,在本文中,我们基于来自35名健康婴儿的202次序列MRI扫描,构建了首个用于动态发育的婴儿皮质结构的时空(4D)高清皮质表面图谱,涵盖七个时间点,即1、3、6、9、12、18和24月龄。为此,我们开发了一种新颖的方法,以确保我们的4D婴儿皮质表面图谱在纵向一致性以及对任何特定个体和年龄的无偏性。具体而言,我们首先通过对每个婴儿的纵向皮质表面进行无偏组内配准来计算个体内部的平均皮质折叠情况。然后,我们通过对所有婴儿个体内部平均皮质折叠的几何特征进行组内配准,建立纵向一致且无偏的个体间皮质对应关系。我们的4D表面图谱捕捉了早期脑发育过程中纵向一致的动态平均形状变化以及皮质折叠的个体变异性。在两个独立的婴儿MRI数据集上的实验结果表明,与未建立纵向一致性而构建的婴儿表面图谱以及FreeSurfer成人表面图谱相比,使用我们的4D婴儿皮质表面图谱作为模板可显著提高跨婴儿个体的皮质表面空间归一化的准确性。此外,基于我们的4D婴儿表面图谱,我们首次揭示了早期脑发育过程中不同皮质区域之间动态皮质发育轨迹的空间详细、区域特异性相关模式。