Suppr超能文献

利用分子动力学驱动的蛋白-配体采样的可移动类型方法进行自由能计算。

Free Energy Calculations Using the Movable Type Method with Molecular Dynamics Driven Protein-Ligand Sampling.

机构信息

School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan430070, PR China.

School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan430070, PR China.

出版信息

J Chem Inf Model. 2022 Nov 28;62(22):5645-5665. doi: 10.1021/acs.jcim.2c00278. Epub 2022 Oct 25.

Abstract

Fast and accurate biomolecular free energy estimation has been a significant interest for decades, and with recent advances in computer hardware, interest in new method development in this field has even grown. Thorough configurational state sampling using molecular dynamics (MD) simulations has long been applied to the estimation of the free energy change corresponding to the receptor-ligand complexing process. However, performing large-scale simulation is still a computational burden for the high-throughput hit screening. Among molecular modeling tools, docking and scoring methods are widely used during the early stages of the drug discovery process in that they can rapidly generate discrete receptor-ligand binding modes and their individual binding affinities. Unfortunately, the lack of thorough conformational sampling in docking and scoring protocols leads to difficulty discovering global minimum binding modes on a complicated energy landscape. The Movable Type (MT) method is a novel absolute binding free energy approach which has demonstrated itself to be robust across a wide range of targets and ligands. Traditionally, the MT method is used with protein-ligand binding modes generated with rigid-receptor or flexible-receptor (induced fit) docking protocols; however, these protocols are by their nature less likely to be effective with more highly flexible targets or with those situations in which binding involves multiple step pathways. In these situations, more thorough samplings are required to better explain the free energy of binding. Therefore, to explore the prediction capability and computational efficiency of the MT method when using more thorough protein-ligand conformational sampling protocols, in the present work, we introduced a series of binding mode modeling protocols ranging from conventional docking routines to single-trajectory conventional molecular dynamics (cMD) and parallel Monte Carlo molecular dynamics (MCMD). Through validation against several structurally and mechanistically diverse protein-ligand test sets, we explore the performance of the MT method as a virtual screening tool to work with the docking protocols and as an MD simulation-based binding free energy tool.

摘要

快速准确的生物分子自由能估计是几十年来的研究热点,随着计算机硬件的最新进展,该领域新方法的开发兴趣甚至有所增加。使用分子动力学 (MD) 模拟进行彻底的构型状态采样,长期以来一直用于估计与受体-配体络合过程相对应的自由能变化。然而,对于高通量命中筛选来说,进行大规模模拟仍然是一个计算负担。在分子建模工具中,对接和评分方法在药物发现过程的早期阶段被广泛使用,因为它们可以快速生成离散的受体-配体结合模式及其各自的结合亲和力。不幸的是,对接和评分协议中缺乏彻底的构象采样导致在复杂的能量景观中难以发现全局最小结合模式。可移动类型 (MT) 方法是一种新颖的绝对结合自由能方法,已证明在广泛的靶标和配体中具有稳健性。传统上,MT 方法用于与刚性受体或柔性受体 (诱导契合) 对接协议生成的蛋白-配体结合模式;然而,这些协议本质上不太可能对更具灵活性的靶标或涉及多个步骤途径的情况有效。在这些情况下,需要更彻底的采样来更好地解释结合自由能。因此,为了探索在使用更彻底的蛋白-配体构象采样协议时 MT 方法的预测能力和计算效率,在本工作中,我们引入了一系列结合模式建模协议,范围从传统的对接例程到单轨迹常规分子动力学 (cMD) 和并行蒙特卡罗分子动力学 (MCMD)。通过对几个结构和机制多样化的蛋白-配体测试集的验证,我们探讨了 MT 方法作为虚拟筛选工具与对接协议一起使用的性能,以及作为基于 MD 模拟的结合自由能工具的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf5/9709919/1d7c4bbff222/ci2c00278_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验