Saravanapandian Vidya, Madani Melika, Nichols India, Vincent Scott, Dover Mary, Dikeman Dante, Philpot Benjamin D, Takumi Toru, Colwell Christopher S, Jeste Shafali, Paul Ketema N, Golshani Peyman
Department of Neurology and Semel Institute for Neuroscience, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
J Neurodev Disord. 2024 Jul 16;16(1):39. doi: 10.1186/s11689-024-09556-7.
Sleep disturbances are a prevalent and complex comorbidity in neurodevelopmental disorders (NDDs). Dup15q syndrome (duplications of 15q11.2-13.1) is a genetic disorder highly penetrant for NDDs such as autism and intellectual disability and it is frequently accompanied by significant disruptions in sleep patterns. The 15q critical region harbors genes crucial for brain development, notably UBE3A and a cluster of gamma-aminobutyric acid type A receptor (GABAR) genes. We previously described an electrophysiological biomarker of the syndrome, marked by heightened beta oscillations (12-30 Hz) in individuals with Dup15q syndrome, akin to electroencephalogram (EEG) alterations induced by allosteric modulation of GABARs. Those with Dup15q syndrome exhibited increased beta oscillations during the awake resting state and during sleep, and they showed profoundly abnormal NREM sleep. This study aims to assess the translational validity of these EEG signatures and to delve into their neurobiological underpinnings by quantifying sleep physiology in chromosome-engineered mice with maternal (matDp/ + mice) or paternal (patDp/ + mice) inheritance of the full 15q11.2-13.1-equivalent duplication, and mice with duplication of just the UBE3A gene (Ube3a overexpression mice; Ube3a OE mice) and comparing the sleep metrics with their respective wildtype (WT) littermate controls.
We collected 48-h EEG/EMG recordings from 35 (23 male, 12 female) 12-24-week-old matDp/ + , patDp/ + , Ube3a OE mice, and their WT littermate controls. We quantified baseline sleep, sleep fragmentation, spectral power dynamics during sleep states, and recovery following sleep deprivation. Within each group, distinctions between Dup15q mutant mice and WT littermate controls were evaluated using analysis of variance (ANOVA) and student's t-test. The impact of genotype and time was discerned through repeated measures ANOVA, and significance was established at p < 0.05.
Our study revealed that across brain states, matDp/ + mice mirrored the elevated beta oscillation phenotype observed in clinical EEGs from individuals with Dup15q syndrome. Time to sleep onset after light onset was significantly reduced in matDp/ + and Ube3a OE mice. However, NREM sleep between Dup15q mutant and WT littermate mice remained unaltered, suggesting a divergence from the clinical presentation in humans. Additionally, while increased beta oscillations persisted in matDp/ + mice after 6-h of sleep deprivation, recovery NREM sleep remained unaltered in all groups, thus suggesting that these mice exhibit resilience in the fundamental processes governing sleep-wake regulation.
Quantification of mechanistic and translatable EEG biomarkers is essential for advancing our understanding of NDDs and their underlying pathophysiology. Our study of sleep physiology in the Dup15q mice underscores that the beta EEG biomarker has strong translational validity, thus opening the door for pre-clinical studies of putative drug targets, using the biomarker as a translational measure of drug-target engagement. The unaltered NREM sleep may be due to inherent differences in neurobiology between mice and humans. These nuanced distinctions highlight the complexity of sleep disruptions in Dup15q syndrome and emphasize the need for a comprehensive understanding that encompasses both shared and distinct features between murine models and clinical populations.
睡眠障碍是神经发育障碍(NDDs)中普遍且复杂的共病情况。15q 重复综合征(15q11.2 - 13.1 重复)是一种遗传性疾病,在自闭症和智力障碍等神经发育障碍中具有高度遗传性,且常伴有睡眠模式的显著紊乱。15q 关键区域包含对大脑发育至关重要的基因,特别是泛素蛋白连接酶 E3A(UBE3A)和一组γ - 氨基丁酸 A 型受体(GABAR)基因。我们之前描述了该综合征的一种电生理生物标志物,其特征为 15q 重复综合征个体中β振荡(12 - 30Hz)增强,类似于 GABAR 变构调节诱导的脑电图(EEG)改变。15q 重复综合征患者在清醒休息状态和睡眠期间均表现出β振荡增加,且非快速眼动(NREM)睡眠存在严重异常。本研究旨在评估这些 EEG 特征的转化效度,并通过量化具有母系(matDp/ + 小鼠)或父系(patDp/ + 小鼠)遗传的完整 15q11.2 - 13.1 等效重复的染色体工程小鼠以及仅具有 UBE3A 基因重复的小鼠(Ube3a 过表达小鼠;Ube3a OE 小鼠)的睡眠生理学,并将睡眠指标与其各自的野生型(WT)同窝对照进行比较,深入探究其神经生物学基础。
我们收集了 35 只(23 只雄性,12 只雌性)12 - 24 周龄的 matDp/ + 、patDp/ + 、Ube3a OE 小鼠及其 WT 同窝对照的 48 小时 EEG/肌电图(EMG)记录。我们量化了基线睡眠、睡眠片段化、睡眠状态期间的频谱功率动态以及睡眠剥夺后的恢复情况。在每组中,使用方差分析(ANOVA)和学生 t 检验评估 15q 重复突变小鼠与 WT 同窝对照之间的差异。通过重复测量 ANOVA 识别基因型和时间的影响,p < 0.05 时确定具有统计学意义。
我们的研究表明,在所有脑状态下,matDp/ + 小鼠反映了 15q 重复综合征个体临床 EEG 中观察到的β振荡升高表型。光照后入睡时间在 matDp/ + 和 Ube3a OE 小鼠中显著缩短。然而,15q 重复突变小鼠与 WT 同窝小鼠之间的 NREM 睡眠未发生改变,这表明与人类临床表现存在差异。此外,虽然睡眠剥夺 6 小时后 matDp/ + 小鼠中β振荡持续增加,但所有组的恢复性 NREM 睡眠均未改变,因此表明这些小鼠在睡眠 - 觉醒调节的基本过程中具有恢复能力。
对机械性和可转化的 EEG 生物标志物进行量化对于推进我们对神经发育障碍及其潜在病理生理学的理解至关重要。我们对 15q 重复小鼠睡眠生理学的研究强调,EEGβ生物标志物具有很强的转化效度,从而为使用该生物标志物作为药物靶点参与的转化指标进行假定药物靶点的临床前研究打开了大门。NREM 睡眠未改变可能是由于小鼠和人类之间神经生物学的固有差异。这些细微差别突出了 15q 重复综合征中睡眠紊乱的复杂性,并强调需要全面理解,包括小鼠模型和临床人群之间的共同特征和不同特征。