Gandomi Amir, Wu Phil, Clement Daniel R, Xing Jinyan, Aviv Rachel, Federbush Matthew, Yuan Zhiyong, Jing Yajun, Wei Guangyao, Hajizadeh Negin
Frank G. Zarb School of Business, Hofstra University, Hempstead, NY, USA.
Institute of Health System Science, Feinstein Institute for Medical Research, Manhasset, NY, USA.
BMC Med Inform Decis Mak. 2024 Jul 16;24(1):195. doi: 10.1186/s12911-024-02573-5.
Despite the significance and prevalence of acute respiratory distress syndrome (ARDS), its detection remains highly variable and inconsistent. In this work, we aim to develop an algorithm (ARDSFlag) to automate the diagnosis of ARDS based on the Berlin definition. We also aim to develop a visualization tool that helps clinicians efficiently assess ARDS criteria.
ARDSFlag applies machine learning (ML) and natural language processing (NLP) techniques to evaluate Berlin criteria by incorporating structured and unstructured data in an electronic health record (EHR) system. The study cohort includes 19,534 ICU admissions in the Medical Information Mart for Intensive Care III (MIMIC-III) database. The output is the ARDS diagnosis, onset time, and severity.
ARDSFlag includes separate text classifiers trained using large training sets to find evidence of bilateral infiltrates in radiology reports (accuracy of 91.9%±0.5%) and heart failure/fluid overload in radiology reports (accuracy 86.1%±0.5%) and echocardiogram notes (accuracy 98.4%±0.3%). A test set of 300 cases, which was blindly and independently labeled for ARDS by two groups of clinicians, shows that ARDSFlag generates an overall accuracy of 89.0% (specificity = 91.7%, recall = 80.3%, and precision = 75.0%) in detecting ARDS cases.
To our best knowledge, this is the first study to focus on developing a method to automate the detection of ARDS. Some studies have developed and used other methods to answer other research questions. Expectedly, ARDSFlag generates a significantly higher performance in all accuracy measures compared to those methods.
尽管急性呼吸窘迫综合征(ARDS)具有重要意义且较为常见,但其检测仍存在很大差异且不一致。在本研究中,我们旨在开发一种算法(ARDSFlag),以根据柏林定义自动诊断ARDS。我们还旨在开发一种可视化工具,帮助临床医生有效评估ARDS标准。
ARDSFlag应用机器学习(ML)和自然语言处理(NLP)技术,通过整合电子健康记录(EHR)系统中的结构化和非结构化数据来评估柏林标准。研究队列包括重症监护医学信息数据库三期(MIMIC-III)中的19534例重症监护病房入院病例。输出结果为ARDS诊断、发病时间和严重程度。
ARDSFlag包括使用大型训练集训练的单独文本分类器,以在放射学报告中查找双侧浸润的证据(准确率为91.9%±0.5%)、放射学报告中心力衰竭/液体超负荷的证据(准确率86.1%±0.5%)以及超声心动图记录中的证据(准确率98.4%±0.3%)。一组300例病例的测试集由两组临床医生进行盲法独立标注,结果显示ARDSFlag在检测ARDS病例时的总体准确率为89.0%(特异性=91.7%,召回率=80.3%,精确率=75.0%)。
据我们所知,这是第一项专注于开发自动检测ARDS方法的研究。一些研究开发并使用了其他方法来回答其他研究问题。不出所料,与那些方法相比,ARDSFlag在所有准确性指标上的表现都显著更高。