Suppr超能文献

用于急性呼吸窘迫综合征检测的多模态深度学习

Multimodal Deep Learning for ARDS Detection.

作者信息

Broecker Stefan, Adams Jason Y, Kumar Girish, Callcut Rachael A, Ni Yuan, Strohmer Thomas

机构信息

Department of Computer Science University of California Davis Davis, CA, USA.

Division of Pulmonary, Critical Care, and Sleep Medicine University of California Davis Sacramento, CA, USA.

出版信息

medRxiv. 2025 Aug 12:2025.08.08.25333333. doi: 10.1101/2025.08.08.25333333.

Abstract

OBJECTIVE

Poor outcomes in acute respiratory distress syndrome (ARDS) can be alleviated with tools that support early diagnosis. Current machine learning methods for detecting ARDS do not take full advantage of the multimodality of ARDS pathophysiology. We developed a multimodal deep learning model that uses imaging data, continuously collected ventilation data, and tabular data derived from a patient's electronic health record (EHR) to make ARDS predictions.

MATERIALS AND METHODS

A chest radiograph (x-ray), at least two hours of ventilator waveform (VWD) data within the first 24 hours of intubation, and EHR-derived tabular data were used from 220 patients admitted to the ICU to train a deep learning model. The model uses pretrained encoders for the x-rays and ventilation data and trains a feature extractor on tabular data. Encoded features for a patient are combined to make a single ARDS prediction. Ablation studies for each modality assessed their effect on the model's predictive capability.

RESULTS

The trimodal model achieved an area under the receiver operator curve (AUROC) of 0.86 with a 95% confidence interval of 0.01. This was a statistically significant improvement (p<0.05) over single modality models and bimodal models trained on VWD+tabular and VWD+x-ray data.

DISCUSSION AND CONCLUSION

Our results demonstrate the potential utility of using deep learning to address complex conditions with heterogeneous data. More work is needed to determine the additive effect of modalities on ARDS detection. Our framework can serve as a blueprint for building performant multimodal deep learning models for conditions with small, heterogeneous datasets.

摘要

目的

支持早期诊断的工具可缓解急性呼吸窘迫综合征(ARDS)的不良预后。当前用于检测ARDS的机器学习方法未充分利用ARDS病理生理学的多模态特性。我们开发了一种多模态深度学习模型,该模型使用影像数据、持续收集的通气数据以及源自患者电子健康记录(EHR)的表格数据来进行ARDS预测。

材料与方法

使用220例入住重症监护病房(ICU)患者的胸部X光片、插管后24小时内至少两小时的呼吸机波形(VWD)数据以及源自EHR的表格数据来训练深度学习模型。该模型对X光片和通气数据使用预训练编码器,并对表格数据训练特征提取器。将患者的编码特征进行组合以做出单一的ARDS预测。对每种模态进行的消融研究评估了它们对模型预测能力的影响。

结果

三模态模型的受试者操作特征曲线下面积(AUROC)为0.86,95%置信区间为0.01。与单模态模型以及基于VWD+表格数据和VWD+X光数据训练的双模态模型相比,这有统计学显著改善(p<0.05)。

讨论与结论

我们的结果证明了使用深度学习处理具有异构数据的复杂病症的潜在效用。需要开展更多工作来确定各模态对ARDS检测的附加效应。我们的框架可为针对小型异构数据集的病症构建高性能多模态深度学习模型提供蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/379e/12363682/e691d87b6eac/nihpp-2025.08.08.25333333v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验