Suppr超能文献

利用机器学习改善急性呼吸窘迫综合征的临床试验设计。

Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome.

作者信息

Schwager E, Jansson K, Rahman A, Schiffer S, Chang Y, Boverman G, Gross B, Xu-Wilson M, Boehme P, Truebel H, Frassica J J

机构信息

Philips Research North America, Cambridge, MA, USA.

Research & Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany.

出版信息

NPJ Digit Med. 2021 Sep 9;4(1):133. doi: 10.1038/s41746-021-00505-5.

Abstract

Heterogeneous patient populations, complex pharmacology and low recruitment rates in the Intensive Care Unit (ICU) have led to the failure of many clinical trials. Recently, machine learning (ML) emerged as a new technology to process and identify big data relationships, enabling a new era in clinical trial design. In this study, we designed a ML model for predictively stratifying acute respiratory distress syndrome (ARDS) patients, ultimately reducing the required number of patients by increasing statistical power through cohort homogeneity. From the Philips eICU Research Institute (eRI) database, no less than 51,555 ARDS patients were extracted. We defined three subpopulations by outcome: (1) rapid death, (2) spontaneous recovery, and (3) long-stay patients. A retrospective univariate analysis identified highly predictive variables for each outcome. All 220 variables were used to determine the most accurate and generalizable model to predict long-stay patients. Multiclass gradient boosting was identified as the best-performing ML model. Whereas alterations in pH, bicarbonate or lactate proved to be strong predictors for rapid death in the univariate analysis, only the multivariate ML model was able to reliably differentiate the disease course of the long-stay outcome population (AUC of 0.77). We demonstrate the feasibility of prospective patient stratification using ML algorithms in the by far largest ARDS cohort reported to date. Our algorithm can identify patients with sufficiently long ARDS episodes to allow time for patients to respond to therapy, increasing statistical power. Further, early enrollment alerts may increase recruitment rate.

摘要

重症监护病房(ICU)中患者群体的异质性、复杂的药理学以及低招募率导致了许多临床试验的失败。最近,机器学习(ML)作为一种处理和识别大数据关系的新技术出现,开启了临床试验设计的新纪元。在本研究中,我们设计了一种机器学习模型,用于对急性呼吸窘迫综合征(ARDS)患者进行预测分层,最终通过提高队列同质性来增加统计效能,从而减少所需的患者数量。从飞利浦电子重症监护病房研究所(eRI)数据库中提取了不少于51555例ARDS患者。我们根据结局定义了三个亚组:(1)快速死亡,(2)自发恢复,以及(3)长期住院患者。回顾性单变量分析确定了每个结局的高度预测性变量。所有220个变量用于确定预测长期住院患者的最准确且最具普遍性的模型。多类梯度提升被确定为表现最佳的机器学习模型。在单变量分析中,pH值、碳酸氢盐或乳酸的变化被证明是快速死亡的强预测因素,而只有多变量机器学习模型能够可靠地区分长期住院结局人群的病程(AUC为0.77)。我们证明了在迄今为止报道的最大的ARDS队列中使用机器学习算法进行前瞻性患者分层的可行性。我们的算法可以识别出ARDS发作时间足够长的患者,以便有时间让患者对治疗做出反应,从而增加统计效能。此外,早期入组警报可能会提高招募率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d136/8429640/2df9c9608089/41746_2021_505_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验