Suppr超能文献

莫桑比克减少门诊HIV感染上呼吸道感染患者不必要抗生素处方的去实施策略:一项整群随机对照试验的研究方案

De-implementation strategy to reduce unnecessary antibiotic prescriptions for ambulatory HIV-infected patients with upper respiratory tract infections in Mozambique: a study protocol of a cluster randomized controlled trial.

作者信息

Faiela Candido, Moon Troy D, Sidat Mohsin, Sevene Esperança

机构信息

Department of Biological Science, Faculty of Science, Eduardo Mondlane University, Maputo, Mozambique.

Department of Physiological Science, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique.

出版信息

Implement Sci. 2024 Jul 16;19(1):51. doi: 10.1186/s13012-024-01382-8.

Abstract

BACKGROUND

Antibiotics are globally overprescribed for the treatment of upper respiratory tract infections (URTI), especially in persons living with HIV. However, most URTIs are caused by viruses, and antibiotics are not indicated. De-implementation is perceived as an important area of research that can lead to reductions in unnecessary, wasteful, or harmful practices, such as excessive or inappropriate antibiotic use for URTI, through the employment of evidence-based interventions to reduce these practices. Research into strategies that lead to successful de-implementation of unnecessary antibiotic prescriptions within the primary health care setting is limited in Mozambique. In this study, we propose a protocol designed to evaluate the use of a clinical decision support algorithm (CDSA) for promoting the de-implementation of unnecessary antibiotic prescriptions for URTI among ambulatory HIV-infected adult patients in primary healthcare settings.

METHODS

This study is a multicenter, two-arm, cluster randomized controlled trial, involving six primary health care facilities in Maputo and Matola municipalities in Mozambique, guided by an innovative implementation science framework, the Dynamic Adaption Process. In total, 380 HIV-infected patients with URTI symptoms will be enrolled, with 190 patients assigned to both the intervention and control arms. For intervention sites, the CDSAs will be posted on either the exam room wall or on the clinician´s exam room desk for ease of reference during clinical visits. Our sample size is powered to detect a reduction in antibiotic use by 15%. We will evaluate the effectiveness and implementation outcomes and examine the effect of multi-level (sites and patients) factors in promoting the de-implementation of unnecessary antibiotic prescriptions. The effectiveness and implementation of our antibiotic de-implementation strategy are the primary outcomes, whereas the clinical endpoints are the secondary outcomes.

DISCUSSION

This research will provide evidence on the effectiveness of the use of the CDSA in promoting the de-implementation of unnecessary antibiotic prescribing in treating acute URTI, among ambulatory HIV-infected patients. Findings will bring evidence for the need to scale up strategies for the de-implementation of unnecessary antibiotic prescription practices in additional healthcare sites within the country.

TRIAL REGISTRATION

ISRCTN, ISRCTN88272350. Registered 16 May 2024, https://www.isrctn.com/ISRCTN88272350.

摘要

背景

抗生素在全球范围内被过度用于治疗上呼吸道感染(URTI),尤其是在艾滋病毒感染者中。然而,大多数上呼吸道感染是由病毒引起的,不需要使用抗生素。去实施被认为是一个重要的研究领域,通过采用基于证据的干预措施来减少不必要、浪费或有害的做法,如对上呼吸道感染过度或不恰当地使用抗生素,可以减少这些行为。在莫桑比克,针对在初级卫生保健环境中成功减少不必要抗生素处方的策略的研究有限。在本研究中,我们提出了一个方案,旨在评估使用临床决策支持算法(CDSA),以促进在初级卫生保健环境中,减少门诊艾滋病毒感染成年患者对上呼吸道感染不必要的抗生素处方。

方法

本研究是一项多中心、双臂、整群随机对照试验,在莫桑比克马普托市和马托拉市的六个初级卫生保健机构进行,以创新的实施科学框架“动态适应过程”为指导。总共将招募380名有上呼吸道感染症状的艾滋病毒感染患者,190名患者被分配到干预组和对照组。对于干预地点,临床决策支持算法将张贴在检查室墙壁上或临床医生的检查室桌子上,以便在临床就诊时方便参考。我们的样本量足以检测出抗生素使用量减少15%。我们将评估有效性和实施结果,并研究多层次(机构和患者)因素在促进减少不必要抗生素处方方面的作用。我们抗生素去实施策略的有效性和实施情况是主要结果,而临床终点是次要结果。

讨论

本研究将为使用临床决策支持算法在促进门诊艾滋病毒感染患者治疗急性上呼吸道感染时减少不必要抗生素处方的有效性提供证据。研究结果将为在该国其他医疗保健机构扩大减少不必要抗生素处方做法的策略提供依据。

试验注册

ISRCTN,ISRCTN88272350。于2024年5月16日注册,https://www.isrctn.com/ISRCTN88272350。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66de/11251216/045f3ba9ae10/13012_2024_1382_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验