Suppr超能文献

聚焦于NOD2:通过用户反馈的机器学习框架推进炎症性肠病药物研发

FOCUS on NOD2: Advancing IBD Drug Discovery with a User-Informed Machine Learning Framework.

作者信息

Choudhary Ruhi, Mahadevan Radhakrishnan

机构信息

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.

出版信息

ACS Med Chem Lett. 2024 Jun 6;15(7):1057-1070. doi: 10.1021/acsmedchemlett.4c00148. eCollection 2024 Jul 11.

Abstract

In this study, we introduce the Framework for Optimized Customizable User-Informed Synthesis (FOCUS), a generative machine learning model tailored for drug discovery. FOCUS integrates domain expertise and uses Proximal Policy Optimization (PPO) to guide Monte Carlo Tree Search (MCTS) to efficiently explore chemical space. It generates SMILES representations of potential drug candidates, optimizing for druggability and binding efficacy to NOD2, PEP, and MCT1 receptors. The model is highly interpretive, allowing for user-feedback and expert-driven adjustments based on detailed cycle reports. Employing tools like SHAP and LIME, FOCUS provides a transparent analysis of decision-making processes, emphasizing features such as docking scores and interaction fingerprints. Comparative studies with Muramyl Dipeptide (MDP) demonstrate improved interaction profiles. FOCUS merges advanced machine learning with expert insight, accelerating the drug discovery pipeline.

摘要

在本研究中,我们介绍了优化的可定制用户知情合成框架(FOCUS),这是一种为药物发现量身定制的生成式机器学习模型。FOCUS整合了领域专业知识,并使用近端策略优化(PPO)来指导蒙特卡洛树搜索(MCTS),以有效探索化学空间。它生成潜在药物候选物的SMILES表示形式,针对可成药性以及与NOD2、PEP和MCT1受体的结合效力进行优化。该模型具有高度的可解释性,允许根据详细的循环报告进行用户反馈和专家驱动的调整。利用SHAP和LIME等工具,FOCUS对决策过程进行透明分析,强调对接分数和相互作用指纹等特征。与胞壁酰二肽(MDP)的比较研究表明相互作用谱有所改善。FOCUS将先进的机器学习与专家见解相结合,加速了药物发现流程。

相似文献

3
Shared decision-making interventions for people with mental health conditions.心理健康问题患者的共同决策干预措施。
Cochrane Database Syst Rev. 2022 Nov 11;11(11):CD007297. doi: 10.1002/14651858.CD007297.pub3.

本文引用的文献

1
Building 3D Generative Models from Minimal Data.利用最少数据构建3D生成模型。
Int J Comput Vis. 2024;132(2):555-580. doi: 10.1007/s11263-023-01870-2. Epub 2023 Sep 13.
6
Deep generative molecular design reshapes drug discovery.深度生成分子设计重塑药物发现。
Cell Rep Med. 2022 Dec 20;3(12):100794. doi: 10.1016/j.xcrm.2022.100794. Epub 2022 Oct 27.
7
SELFIES and the future of molecular string representations.自拍与分子串表示法的未来。
Patterns (N Y). 2022 Oct 14;3(10):100588. doi: 10.1016/j.patter.2022.100588.
10
Discovery of Desmuramylpeptide NOD2 Agonists with Single-Digit Nanomolar Potency.发现具有个位数纳摩尔效力的去甲muramyl肽NOD2激动剂。
ACS Med Chem Lett. 2022 Jul 18;13(8):1270-1277. doi: 10.1021/acsmedchemlett.2c00121. eCollection 2022 Aug 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验