Choudhary Ruhi, Mahadevan Radhakrishnan
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
ACS Med Chem Lett. 2024 Jun 6;15(7):1057-1070. doi: 10.1021/acsmedchemlett.4c00148. eCollection 2024 Jul 11.
In this study, we introduce the Framework for Optimized Customizable User-Informed Synthesis (FOCUS), a generative machine learning model tailored for drug discovery. FOCUS integrates domain expertise and uses Proximal Policy Optimization (PPO) to guide Monte Carlo Tree Search (MCTS) to efficiently explore chemical space. It generates SMILES representations of potential drug candidates, optimizing for druggability and binding efficacy to NOD2, PEP, and MCT1 receptors. The model is highly interpretive, allowing for user-feedback and expert-driven adjustments based on detailed cycle reports. Employing tools like SHAP and LIME, FOCUS provides a transparent analysis of decision-making processes, emphasizing features such as docking scores and interaction fingerprints. Comparative studies with Muramyl Dipeptide (MDP) demonstrate improved interaction profiles. FOCUS merges advanced machine learning with expert insight, accelerating the drug discovery pipeline.
在本研究中,我们介绍了优化的可定制用户知情合成框架(FOCUS),这是一种为药物发现量身定制的生成式机器学习模型。FOCUS整合了领域专业知识,并使用近端策略优化(PPO)来指导蒙特卡洛树搜索(MCTS),以有效探索化学空间。它生成潜在药物候选物的SMILES表示形式,针对可成药性以及与NOD2、PEP和MCT1受体的结合效力进行优化。该模型具有高度的可解释性,允许根据详细的循环报告进行用户反馈和专家驱动的调整。利用SHAP和LIME等工具,FOCUS对决策过程进行透明分析,强调对接分数和相互作用指纹等特征。与胞壁酰二肽(MDP)的比较研究表明相互作用谱有所改善。FOCUS将先进的机器学习与专家见解相结合,加速了药物发现流程。