Suppr超能文献

通过生成模型和基于结构的药物设计加速大环CDK2抑制剂QR-6401的发现

Accelerated Discovery of Macrocyclic CDK2 Inhibitor QR-6401 by Generative Models and Structure-Based Drug Design.

作者信息

Yu Yang, Huang Junhong, He Hu, Han Jing, Ye Geyan, Xu Tingyang, Sun Xianqiang, Chen Xiumei, Ren Xiaoming, Li Chunlai, Li Huijuan, Huang Wei, Liu Yangyang, Wang Xinjuan, Gao Yongzhi, Cheng Nianhe, Guo Na, Chen Xibo, Feng Jianxia, Hua Yuxia, Liu Chong, Zhu Guoyun, Xie Zhi, Yao Lili, Zhong Wenge, Chen Xinde, Liu Wei, Li Hailong

机构信息

Tencent AI Lab, Tencent, Shenzhen 518057, China.

Regor Therapeutics Group, Shanghai, 201210, China.

出版信息

ACS Med Chem Lett. 2023 Feb 8;14(3):297-304. doi: 10.1021/acsmedchemlett.2c00515. eCollection 2023 Mar 9.

Abstract

Selective CDK2 inhibitors have the potential to provide effective therapeutics for CDK2-dependent cancers and for combating drug resistance due to high cyclin E1 (CCNE1) expression intrinsically or CCNE1 amplification induced by treatment of CDK4/6 inhibitors. Generative models that take advantage of deep learning are being increasingly integrated into early drug discovery for hit identification and lead optimization. Here we report the discovery of a highly potent and selective macrocyclic CDK2 inhibitor QR-6401 () accelerated by the application of generative models and structure-based drug design (SBDD). QR-6401 () demonstrated robust antitumor efficacy in an OVCAR3 ovarian cancer xenograft model via oral administration.

摘要

选择性CDK2抑制剂有潜力为依赖CDK2的癌症以及克服因细胞周期蛋白E1(CCNE1)高表达或CDK4/6抑制剂治疗诱导的CCNE1扩增而产生的耐药性提供有效的治疗方法。利用深度学习的生成模型正越来越多地被整合到早期药物发现中,用于命中物识别和先导化合物优化。在此,我们报告通过应用生成模型和基于结构的药物设计(SBDD)加速发现了一种高效且选择性的大环CDK2抑制剂QR-6401()。QR-6401()在OVCAR3卵巢癌异种移植模型中通过口服给药显示出强大的抗肿瘤功效。

相似文献

5
Development of CDK2 and CDK5 Dual Degrader TMX-2172.开发 CDK2 和 CDK5 双降解剂 TMX-2172。
Angew Chem Int Ed Engl. 2020 Aug 10;59(33):13865-13870. doi: 10.1002/anie.202004087. Epub 2020 Jun 3.

引用本文的文献

本文引用的文献

1
DRlinker: Deep Reinforcement Learning for Optimization in Fragment Linking Design.DRlinker:用于片段连接设计优化的深度强化学习
J Chem Inf Model. 2022 Dec 12;62(23):5907-5917. doi: 10.1021/acs.jcim.2c00982. Epub 2022 Nov 20.
3
Accurate de novo design of membrane-traversing macrocycles.从头精准设计穿膜大环分子。
Cell. 2022 Sep 15;185(19):3520-3532.e26. doi: 10.1016/j.cell.2022.07.019. Epub 2022 Aug 29.
7
Deep generative design with 3D pharmacophoric constraints.具有3D药效团约束的深度生成设计。
Chem Sci. 2021 Oct 25;12(43):14577-14589. doi: 10.1039/d1sc02436a. eCollection 2021 Nov 10.
8
Enhancing preclinical drug discovery with artificial intelligence.利用人工智能增强临床前药物发现。
Drug Discov Today. 2022 Apr;27(4):967-984. doi: 10.1016/j.drudis.2021.11.023. Epub 2021 Nov 25.
10
MolGPT: Molecular Generation Using a Transformer-Decoder Model.MolGPT:基于 Transformer-Decoder 模型的分子生成。
J Chem Inf Model. 2022 May 9;62(9):2064-2076. doi: 10.1021/acs.jcim.1c00600. Epub 2021 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验