Suppr超能文献

一项关于与住院医师参与度、抑郁、职业倦怠及留任意向相关因素的多波研究。

A Multi-Wave Study of Factors Associated With Resident Engagement, Depression, Burnout, and Stay Intent.

作者信息

Brafford Anne M, Ellis Brendon, Guldner Greg, Riazi Gabrielle, Liu Xitao, Wells Jessica C, Siegel Jason T

机构信息

Claremont Graduate University, Claremont, CA.

HCA Healthcare Graduate Medical Education, Brentwood, TN.

出版信息

HCA Healthc J Med. 2024 Jun 1;5(3):313-330. doi: 10.36518/2689-0216.1837. eCollection 2024.

Abstract

BACKGROUND

Many studies have documented the epidemic of mental ill-being among resident physicians, but fewer have focused on mental well-being or on guiding intervention design to make progress toward positive change in residency programs to support resident thriving. Informed by the job demands-resources model (JD-R) and positive psychology, the current study examines 4 potential predictors of residents' ill-being (burnout, depression) and well-being (engagement, stay intent) that are malleable and thus capable of change through intervention: psychological capital (PsyCap), supervising physicians' autonomy-supportive leadership style (ASL), social support, and meaningful work.

METHODS

Three waves of data were collected between November 2017 and September 2018 at a large hospital system in the United States. Due to participant response rates, we were unable to conduct a planned longitudinal analysis. Therefore, for each wave, Bayesian regression analyses were used to examine cross-sectional relationships between the 4 predictors and each outcome.

RESULTS

Although findings varied across the study's 3 waves, the outcomes were largely as expected. With only 1 exception (depressive symptoms in Wave 2), meaningful work significantly predicted all outcome variables in the expected direction across all 3 waves. PsyCap significantly predicted burnout, depressive symptoms, and engagement in the expected direction across all 3 waves. ASL significantly predicted engagement in the expected direction across all 3 waves, as well as depressive symptoms and stay intent in 2 waves, and burnout in 1 wave. Social support significantly negatively predicted depressive symptoms in all 3 waves and burnout in 1 wave.

CONCLUSION

Applying the JD-R framework and a positive psychology lens can open new pathways for developing programming to support resident thriving. Meaningful work, PsyCap, ASL, and social support all significantly predicted 1 or more outcomes related to resident thriving (burnout, depression, engagement, stay intent) across all 3 waves. Thus, this study provides theoretical and practical implications for future intervention studies and designing current programming for resident thriving.

摘要

背景

许多研究记录了住院医师中精神健康不佳的流行情况,但较少有研究关注精神健康,或指导干预设计以在住院医师培训项目中朝着积极变化取得进展,以支持住院医师的蓬勃发展。基于工作需求-资源模型(JD-R)和积极心理学,本研究考察了住院医师健康不佳(职业倦怠、抑郁)和健康良好(投入、留任意向)的4个潜在可塑预测因素,因此能够通过干预发生改变:心理资本(PsyCap)、指导医师的自主支持型领导风格(ASL)、社会支持和有意义的工作。

方法

2017年11月至2018年9月期间,在美国的一个大型医院系统收集了三轮数据。由于参与者的回复率,我们无法进行计划中的纵向分析。因此,对于每一轮,使用贝叶斯回归分析来检验4个预测因素与每个结果之间的横断面关系。

结果

尽管研究的三轮结果各不相同,但结果大体符合预期。除了一个例外(第二轮的抑郁症状),有意义的工作在所有三轮中均显著地按预期方向预测了所有结果变量。心理资本在所有三轮中均显著地按预期方向预测了职业倦怠、抑郁症状和投入。自主支持型领导风格在所有三轮中均显著地按预期方向预测了投入,在两轮中预测了抑郁症状和留任意向,在一轮中预测了职业倦怠。社会支持在所有三轮中均显著地负向预测了抑郁症状,在一轮中预测了职业倦怠。

结论

应用JD-R框架和积极心理学视角可为开发支持住院医师蓬勃发展的项目开辟新途径。有意义的工作、心理资本、自主支持型领导风格和社会支持在所有三轮中均显著地预测了1个或更多与住院医师蓬勃发展相关的结果(职业倦怠、抑郁、投入、留任意向)。因此,本研究为未来的干预研究以及为住院医师蓬勃发展设计当前项目提供了理论和实践意义。

相似文献

9
Thriving in Residency: a Qualitative Study.住院医师的成长:一项定性研究。
J Gen Intern Med. 2022 Jul;37(9):2173-2179. doi: 10.1007/s11606-022-07504-6. Epub 2022 Jun 16.

引用本文的文献

本文引用的文献

3
Beyond burnout: looking deeply into physician distress.超越倦怠:深入探究医师痛苦。
Can J Ophthalmol. 2020 Jun;55(3 Suppl 1):7-16. doi: 10.1016/j.jcjo.2020.01.014. Epub 2020 Mar 20.
6
7
Healing the Professional Culture of Medicine.治愈医学的专业文化。
Mayo Clin Proc. 2019 Aug;94(8):1556-1566. doi: 10.1016/j.mayocp.2019.03.026. Epub 2019 Jul 11.
8
The relationship between depression symptoms, absenteeism and presenteeism.抑郁症状、旷工和出勤主义之间的关系。
J Affect Disord. 2019 Sep 1;256:536-540. doi: 10.1016/j.jad.2019.06.041. Epub 2019 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验