Suppr超能文献

挖掘新环肽生物碱的原始植物转录组数据。

Mining raw plant transcriptomic data for new cyclopeptide alkaloids.

作者信息

Kriger Draco, Pasquale Michael A, Ampolini Brigitte G, Chekan Jonathan R

机构信息

Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.

出版信息

Beilstein J Org Chem. 2024 Jul 11;20:1548-1559. doi: 10.3762/bjoc.20.138. eCollection 2024.

Abstract

In recent years, genome and transcriptome mining have dramatically expanded the rate of discovering diverse natural products from bacteria and fungi. In plants, this approach is often more limited due to the lack of available annotated genomes and transcriptomes combined with a less consistent clustering of biosynthetic genes. The recently identified burpitide class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products offer a valuable opportunity for bioinformatics-guided discovery in plants due to their short biosynthetic pathways and gene encoded substrates. Using a high-throughput approach to assemble and analyze 700 publicly available raw transcriptomic data sets, we uncover the potential distribution of split burpitide precursor peptides in Streptophyta. Metabolomic analysis of target plants confirms our bioinformatic predictions of new cyclopeptide alkaloids from both known and new sources.

摘要

近年来,基因组和转录组挖掘极大地提高了从细菌和真菌中发现多样天然产物的速率。在植物中,由于缺乏可用的注释基因组和转录组,再加上生物合成基因的聚类不太一致,这种方法往往更受限制。最近鉴定出的核糖体合成和翻译后修饰肽(RiPP)天然产物中的burpitide类,由于其生物合成途径短且由基因编码底物,为植物中的生物信息学引导发现提供了宝贵机会。通过高通量方法组装和分析700个公开可用的原始转录组数据集,我们揭示了裂合burpitide前体肽在链形植物中的潜在分布。对目标植物的代谢组学分析证实了我们对来自已知和新来源的新环肽生物碱的生物信息学预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9cd/11250218/bc2d0fd351c8/Beilstein_J_Org_Chem-20-1548-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验