Suppr超能文献

用于将CO还原为多碳产物的串联催化剂高通量筛选的机理洞察

Mechanistic insights into high-throughput screening of tandem catalysts for CO reduction to multi-carbon products.

作者信息

Liu Yingnan, Wang Dashuai, Yang Bin, Li Zhongjian, Zhang Tao, Rodriguez Raul D, Lei Lecheng, Hou Yang

机构信息

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

Institute of Zhejiang University - Quzhou, Quzhou 324000, China.

出版信息

Phys Chem Chem Phys. 2024 Jul 31;26(30):20399-20408. doi: 10.1039/d4cp01622j.

Abstract

In carbon dioxide electrochemical reduction (COER), since isolated catalysts encounter challenges in meeting the demands of intricate processes for producing multi-carbon (C) products, tandem catalysis is emerging as a promising approach. Nevertheless, there remains an insufficient theoretical understanding of designing tandem catalysts. Herein, we utilized density functional theory (DFT) to screen 80 tandem catalysts for efficient COER to C products systematically, which combines the advantages of nitrogen-doped carbon-supported transition metal single-atom catalysts (M-N-C) and copper clusters. Three crucial criteria were designed to select structures for generation and transfer of *CO and facilitate C-C coupling. The optimal Cu/RuN-pl catalyst exhibited an excellent ethanol production capacity. Additionally, the relationship between CO adsorption strength and transfer energy barrier was established, and the influence of the electronic structure on its adsorption strength was studied. This provided a novel and well-considered solution and theoretical guidance for the design of rational composition and structurally superior tandem catalysts.

摘要

在二氧化碳电化学还原(COER)中,由于孤立的催化剂在满足生产多碳(C)产物的复杂过程需求方面面临挑战,串联催化正成为一种有前途的方法。然而,在设计串联催化剂方面,理论认识仍然不足。在此,我们利用密度泛函理论(DFT)系统地筛选了80种用于高效COER生成C产物的串联催化剂,这些催化剂结合了氮掺杂碳负载过渡金属单原子催化剂(M-N-C)和铜簇的优点。设计了三个关键标准来选择用于*CO生成和转移以及促进C-C偶联的结构。最优的Cu/RuN-pl催化剂表现出优异的乙醇生产能力。此外,建立了CO吸附强度与转移能垒之间的关系,并研究了电子结构对其吸附强度的影响。这为合理组成和结构优越的串联催化剂的设计提供了一种新颖且经过充分考虑的解决方案和理论指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验