Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80305, United States.
Department of Botany and Plant Sciences, University of California, Riverside, California 92521-9800, United States.
ACS Chem Biol. 2024 Aug 16;19(8):1757-1772. doi: 10.1021/acschembio.4c00243. Epub 2024 Jul 17.
The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem, which could enable many practical applications of protein biosensors. In this work, we analyzed two engineered biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free-energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.
新型蛋白-配体结合相互作用的工程设计,特别是对于复杂的类药物分子,是一个尚未解决的问题,这将使许多蛋白质生物传感器的实际应用成为可能。在这项工作中,我们分析了两个源自植物激素传感器 PYR1 的工程化生物传感器,以识别农用化学品 mandipropamid 或合成大麻素 WIN55,212-2。我们结合使用定量深度突变扫描实验和分子动力学模拟,证明常见位置的突变可以促进蛋白-配体形状互补,并揭示了互补不同配体所需的静电网络的显著差异。MD 模拟表明,两种 PYR1 蛋白-配体复合物都结合其靶配体的单个构象,该构象接近最低自由能构象。使用固定构象和刚体取向的计算设计导致具有纳摩尔检测限的新型 WIN55,212-2 传感器。这项工作揭示了多功能 PYR1 生物传感器支架能够结合多种配体的机制。这项工作还提供了用于采样现实配体构象和刚体对准的计算方法,从而简化了新型感兴趣配体的生物传感器的计算设计。