Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA.
Nat Chem Biol. 2024 Jan;20(1):103-110. doi: 10.1038/s41589-023-01447-7. Epub 2023 Oct 23.
Plants sense abscisic acid (ABA) using chemical-induced dimerization (CID) modules, including the receptor PYR1 and HAB1, a phosphatase inhibited by ligand-activated PYR1. This system is unique because of the relative ease with which ligand recognition can be reprogrammed. To expand the PYR1 system, we designed an orthogonal '' module, which harbors a dimer interface salt bridge; X-ray crystallographic, biochemical and in vivo analyses confirm its orthogonality. We used this module to create PYR1/HAB1* and PYR1*/HAB1*, which possess nanomolar sensitivities to their activating ligands mandipropamid and azinphos-ethyl. Experiments in Arabidopsis thaliana and Saccharomyces cerevisiae demonstrate the sensitive detection of banned organophosphate contaminants using living biosensors and the construction of multi-input/output genetic circuits. Our new modules enable ligand-programmable multi-channel CID systems for plant and eukaryotic synthetic biology that can empower new plant-based and microbe-based sensing modalities.
植物通过化学诱导二聚体化(CID)模块感知脱落酸(ABA),包括受体PYR1 和 HAB1,后者是被配体激活的 PYR1 抑制的磷酸酶。由于配体识别相对容易重新编程,该系统是独一无二的。为了扩展 PYR1 系统,我们设计了一个正交的“”模块,它具有二聚体界面盐桥;X 射线晶体学、生化和体内分析证实了其正交性。我们使用这个模块创建了 PYR1/HAB1和 PYR1/HAB1*,它们对其激活配体 mandipropamid 和azinphos-ethyl 的灵敏度达到纳摩尔级。在拟南芥和酿酒酵母中的实验表明,使用活体生物传感器可以灵敏地检测到被禁止的有机磷污染物,并构建多输入/输出遗传电路。我们的新模块为植物和真核生物合成生物学启用了配体可编程的多通道 CID 系统,可实现新的基于植物和基于微生物的传感模式。