Suppr超能文献

通过结合心电图、脉搏血氧饱和度和心音的机器学习方法预测左心室压力指标:一项临床前可行性研究。

Prediction of Left Ventricle Pressure Indices Via a Machine Learning Approach Combining ECG, Pulse Oximetry, and Cardiac Sounds: a Preclinical Feasibility Study.

作者信息

Fassina Lorenzo, Muzio Francesco Paolo Lo, Berboth Leonhard, Ötvös Jens, Faragli Alessandro, Alogna Alessio

机构信息

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, 27100, Italy.

Department of Cardiology, Deutsches Herzzentrum Der Charité, Angiology and Intensive Care Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.

出版信息

J Cardiovasc Transl Res. 2024 Dec;17(6):1307-1315. doi: 10.1007/s12265-024-10546-2. Epub 2024 Jul 17.

Abstract

Heart failure (HF) is defined as the inability of the heart to meet body oxygen demand requiring an elevation in left ventricular filling pressures (LVP) to compensate. LVP increase can be assessed in the cardiac catheterization laboratory, but this procedure is invasive and time-consuming to the extent that physicians rather rely on non-invasive diagnostic tools. In this work, we assess the feasibility to develop a novel machine-learning (ML) approach to predict clinically relevant LVP indices. Synchronized invasive (pressure-volume tracings) and non-invasive signals (ECG, pulse oximetry, and cardiac sounds) were collected from anesthetized, closed-chest Göttingen minipigs. Animals were either healthy or had HF with reduced ejection fraction and circa 500 heartbeats were included in the analysis for each animal. The ML algorithm showed excellent prediction of LVP indices estimating, for instance, the end-diastolic pressure with a R of 0.955. This novel ML algorithm could assist clinicians in the care of HF patients.

摘要

心力衰竭(HF)的定义是心脏无法满足身体的氧气需求,需要提高左心室充盈压(LVP)来进行代偿。LVP升高可在心脏导管实验室中进行评估,但该操作具有侵入性且耗时,以至于医生更依赖非侵入性诊断工具。在这项研究中,我们评估了开发一种新型机器学习(ML)方法来预测临床相关LVP指标的可行性。从麻醉状态下的闭胸哥廷根小型猪收集同步的侵入性(压力-容积曲线)和非侵入性信号(心电图、脉搏血氧饱和度和心音)。动物分为健康组或射血分数降低的HF组,每只动物约500次心跳被纳入分析。ML算法对LVP指标显示出出色的预测能力,例如,估计舒张末期压力的R值为0.955。这种新型ML算法可为临床医生护理HF患者提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/346b/11634911/8fb21a268060/12265_2024_10546_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验