Suppr超能文献

用于预测帕金森病患者五年内认知衰退的机器学习:认知评估量表与多巴胺转运体单光子发射计算机断层扫描及临床生物标志物的比较

Machine learning for predicting cognitive decline within five years in Parkinson's disease: Comparing cognitive assessment scales with DAT SPECT and clinical biomarkers.

作者信息

Gorji Arman, Fathi Jouzdani Ali

机构信息

Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Neuroscience and Artificial Intelligence Research Group (NAIRG), Hamadan University of Medical Sciences, Hamadan, Iran.

USERN Office, Hamadan University of Medical Sciences, Hamadan, Iran.

出版信息

PLoS One. 2024 Jul 17;19(7):e0304355. doi: 10.1371/journal.pone.0304355. eCollection 2024.

Abstract

OBJECTIVE

Parkinson's disease (PD) is an age-related neurodegenerative condition characterized mostly by motor symptoms. Although a wide range of non-motor symptoms (NMS) are frequently experienced by PD patients. One of the important and common NMS is cognitive impairment, which is measured using different cognitive scales. Monitoring cognitive impairment and its decline in PD is essential for patient care and management. In this study, our goal is to identify the most effective cognitive scale in predicting cognitive decline over a 5-year timeframe initializing clinical biomarkers and DAT SPECT.

METHODS

Machine Learning has previously shown superior performance in image and clinical data classification and detection. In this study, we propose to use machine learning with different types of data, such as DAT SPECT and clinical biomarkers, to predict PD-CD based on various cognitive scales. We collected 330 DAT SPECT images and their clinical data in baseline, years 2,3,4, and 5 from Parkinson's Progression Markers Initiative (PPMI). We then designed a 3D Autoencoder to extract deep radiomic features (DF) from DAT SPECT images, and we then concatenated it with 17 clinical features (CF) to predict cognitive decline based on Montreal Cognitive Assessment (MoCA) and The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS-I).

RESULTS

The utilization of MoCA as a cognitive decline scale yielded better performance in various years compared to MDS-UPDRS-I. In year 4, the application of the deep radiomic feature resulted in the highest achievement, with a cross-validation AUC of 89.28, utilizing the gradient boosting classifier. For the MDS-UPDRS-I scale, the highest achievement was obtained by utilizing the deep radiomic feature, resulting in a cross-validation AUC of 81.34 with the random forest classifier.

CONCLUSIONS

The study findings indicate that the MoCA scale may be a more effective predictor of cognitive decline within 5 years compared to MDS-UPDRS-I. Furthermore, deep radiomic features had better performance compared to sole clinical biomarkers or clinical and deep radiomic combined. These results suggest that using the MoCA score and deep radiomic features extracted from DAT SPECT could be a promising approach for identifying individuals at risk for cognitive decline in four years. Future research is needed to validate these findings and explore their utility in clinical practice.

摘要

目的

帕金森病(PD)是一种与年龄相关的神经退行性疾病,主要特征为运动症状。尽管帕金森病患者经常会出现多种非运动症状(NMS)。其中重要且常见的非运动症状之一是认知障碍,可通过不同的认知量表进行测量。监测帕金森病患者的认知障碍及其衰退情况对于患者的护理和管理至关重要。在本研究中,我们的目标是确定在结合临床生物标志物和多巴胺转运体单光子发射计算机断层扫描(DAT SPECT)的情况下,在5年时间范围内预测认知衰退最有效的认知量表。

方法

机器学习在图像和临床数据分类及检测方面已显示出卓越性能。在本研究中,我们提议使用机器学习结合不同类型的数据,如DAT SPECT和临床生物标志物,基于各种认知量表预测帕金森病认知衰退(PD-CD)。我们从帕金森病进展标志物倡议(PPMI)中收集了330例DAT SPECT图像及其在基线、第2年、第3年、第4年和第5年的临床数据。然后我们设计了一个三维自动编码器从DAT SPECT图像中提取深度放射组学特征(DF),接着将其与17个临床特征(CF)相结合,以基于蒙特利尔认知评估(MoCA)和运动障碍协会统一帕金森病评定量表(MDS-UPDRS-I)预测认知衰退。

结果

与MDS-UPDRS-I相比,在不同年份中,将MoCA用作认知衰退量表表现更佳。在第4年,利用梯度提升分类器应用深度放射组学特征取得了最高成绩,交叉验证曲线下面积(AUC)为89.28。对于MDS-UPDRS-I量表,利用深度放射组学特征取得了最高成绩,使用随机森林分类器时交叉验证AUC为81.34。

结论

研究结果表明,与MDS-UPDRS-I相比,MoCA量表可能是5年内认知衰退更有效的预测指标。此外,与单独的临床生物标志物或临床与深度放射组学相结合相比,深度放射组学特征表现更佳。这些结果表明,使用MoCA评分和从DAT SPECT中提取的深度放射组学特征可能是识别4年内有认知衰退风险个体的一种有前景的方法。未来需要进一步研究来验证这些发现并探索其在临床实践中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eba/11253925/f41b13f9f7f1/pone.0304355.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验