Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, USA.
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada.
Mol Imaging Biol. 2019 Dec;21(6):1165-1173. doi: 10.1007/s11307-019-01334-5.
Quantitative analysis of dopamine transporter (DAT) single-photon emission computed tomography (SPECT) images can enhance diagnostic confidence and improve their potential as a biomarker to monitor the progression of Parkinson's disease (PD). In the present work, we aim to predict motor outcome from baseline DAT SPECT imaging radiomic features and clinical measures using machine learning techniques.
We designed and trained artificial neural networks (ANNs) to analyze the data from 69 patients within the Parkinson's Progressive Marker Initiative (PPMI) database. The task was to predict the unified PD rating scale (UPDRS) part III motor score in year 4 from 92 imaging features extracted on 12 different regions as well as 6 non-imaging measures at baseline (year 0). We first performed univariate screening (including the adjustment for false discovery) to select 4 regions each having 10 features with significant performance in classifying year 4 motor outcome into two classes of patients (divided by the UPDRS III threshold of 30). The leave-one-out strategy was then applied to train and test the ANNs for individual and combinations of features. The prediction statistics were calculated from 100 rounds of experiments, and the accuracy in appropriate prediction (classification of year 4 outcome) was quantified.
Out of the baseline non-imaging features, only the UPDRS III (at year 0) was predictive, while multiple imaging features depicted significance. The different selected features reached a predictive accuracy of 70 % if used individually. Combining the top imaging features from the selected regions significantly improved the prediction accuracy to 75 % (p < 0.01). The combination of imaging features with the year 0 UPDRS III score also improved the prediction accuracy to 75 %.
This study demonstrated the added predictive value of radiomic features extracted from DAT SPECT images in serving as a biomarker for PD progression tracking.
定量分析多巴胺转运体(DAT)单光子发射计算机断层扫描(SPECT)图像可以增强诊断信心,并提高其作为监测帕金森病(PD)进展的生物标志物的潜力。在本研究中,我们旨在使用机器学习技术从基线 DAT SPECT 成像放射组学特征和临床指标预测运动结果。
我们设计并训练了人工神经网络(ANNs),以分析帕金森进展标志物倡议(PPMI)数据库中的 69 名患者的数据。任务是从 12 个不同区域提取的 92 个成像特征以及基线(第 0 年)的 6 个非成像指标中预测第 4 年的统一 PD 评定量表(UPDRS)第 III 部分运动评分。我们首先进行了单变量筛选(包括对假发现的调整),以选择每个具有 10 个特征的 4 个区域,这些特征在将第 4 年运动结果分为两类患者(按 UPDRS III 阈值 30 划分)方面具有显著性能。然后应用留一法策略训练和测试 ANN 以进行个体和特征组合的预测。从 100 次实验中计算了预测统计数据,并量化了适当预测(第 4 年结果分类)的准确性。
在基线非成像特征中,只有 UPDRS III(第 0 年)具有预测性,而多个成像特征则具有重要意义。如果单独使用,不同的选择特征的预测准确率为 70%。从选定区域选择的顶级成像特征的组合可显著提高预测准确性,达到 75%(p<0.01)。将成像特征与第 0 年 UPDRS III 评分相结合也可将预测准确性提高至 75%。
本研究证明了从 DAT SPECT 图像中提取的放射组学特征作为 PD 进展跟踪的生物标志物具有附加的预测价值。