Suppr超能文献

应用深度学习对 DaTscan SPECT 图像进行帕金森病运动功能预后的改善。

Improved motor outcome prediction in Parkinson's disease applying deep learning to DaTscan SPECT images.

机构信息

Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, USA.

Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, Canada.

出版信息

Comput Biol Med. 2021 May;132:104312. doi: 10.1016/j.compbiomed.2021.104312. Epub 2021 Mar 6.

Abstract

PURPOSE

Dopamine transporter (DAT) SPECT imaging is routinely used in the diagnosis of Parkinson's disease (PD). Our previous efforts demonstrated the use of DAT SPECT images in a data-driven manner by improving prediction of PD clinical assessment outcome using radiomic features. In this work, we develop a convolutional neural network (CNN) based technique to predict clinical motor function evaluation scores directly from longitudinal DAT SPECT images and non-imaging clinical measures.

PROCEDURES

Data of 252 subjects from the Parkinson's Progression Markers Initiative (PPMI) database were used in this work. The motor part (III) score of the unified Parkinson's disease rating scale (UPDRS) at year 4 was selected as outcome, and the DAT SPECT images and UPDRS_III scores acquired at year 0 and year 1 were used as input data. The specified inputs and outputs were used to develop a CNN based regression method for prediction. Ten-fold cross-validation was used to test the trained network and the absolute difference between predicted and actual scores was used as the performance metric. Prediction using inputs with and without DAT images was evaluated.

RESULTS

Using only UPDRS_III scores at year 0 and year 1, the prediction yielded an average difference of 7.6 ± 6.1 between the predicted and actual year 4 motor scores (range [5, 77]). The average difference was reduced to 6.0 ± 4.8 when longitudinal DAT SPECT images were included, which was determined to be statistically significant via a two-sample t-test, and demonstrates the benefit of including images.

CONCLUSIONS

This study shows that adding DAT SPECT images to UPDRS_III scores as inputs to deep-learning based prediction significantly improves the outcome. Without requiring segmentation and feature extraction, the CNN based prediction method allows easier and more universial application.

摘要

目的

多巴胺转运体(DAT)SPECT 成像通常用于帕金森病(PD)的诊断。我们之前的研究通过使用放射组学特征提高 PD 临床评估结果的预测,展示了以数据驱动的方式使用 DAT SPECT 图像。在这项工作中,我们开发了一种基于卷积神经网络(CNN)的技术,直接从纵向 DAT SPECT 图像和非成像临床测量数据中预测临床运动功能评估评分。

过程

本研究使用帕金森病进展标志物倡议(PPMI)数据库中的 252 名受试者的数据。将统一帕金森病评定量表(UPDRS)的运动部分(III)评分作为第 4 年的结果,将第 0 年和第 1 年获得的 DAT SPECT 图像和 UPDRS_III 评分作为输入数据。使用指定的输入和输出数据来开发基于 CNN 的回归方法进行预测。使用 10 折交叉验证测试训练网络,将预测值与实际得分之间的绝对差值作为性能指标。评估了使用包含和不包含 DAT 图像的输入进行预测的情况。

结果

仅使用第 0 年和第 1 年的 UPDRS_III 评分,预测结果与第 4 年运动评分的实际值之间的平均差值为 7.6±6.1(范围为[5,77])。当包括纵向 DAT SPECT 图像时,平均差值减小到 6.0±4.8,通过两样本 t 检验确定这具有统计学意义,这表明包含图像的益处。

结论

这项研究表明,将 DAT SPECT 图像与 UPDRS_III 评分作为深度学习预测的输入相结合,显著提高了预测结果。无需进行分割和特征提取,基于 CNN 的预测方法可以更轻松、更普遍地应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验