Suppr超能文献

在具有可变刚度和生长因子的丝水凝胶上培养的人间充质干细胞分化为成熟的平滑肌细胞表型。

Human mesenchymal stem cells cultured on silk hydrogels with variable stiffness and growth factor differentiate into mature smooth muscle cell phenotype.

作者信息

Floren Michael, Bonani Walter, Dharmarajan Anirudh, Motta Antonella, Migliaresi Claudio, Tan Wei

机构信息

Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, 38123 Trento, Italy.

Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, 38123 Trento, Italy.

出版信息

Acta Biomater. 2016 Feb;31:156-166. doi: 10.1016/j.actbio.2015.11.051. Epub 2015 Nov 24.

Abstract

UNLABELLED

Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms.

STATEMENT OF SIGNIFICANCE

This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we demonstrate the upregulation of mature vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Moreover, we demonstrate the potential to direct specialized hMSC differentiation by modulating stiffness and growth factor using silk fibroin, a well-tolerated and -defined biomaterial with an impressive portfolio of tissue engineering applications. Altogether, our study reinforce the fact that complex differentiation protocols may be simplified by engineering the cellular microenvironment on multiple scales, i.e. matrix stiffness with growth factor.

摘要

未标记

细胞与基质以及细胞与生物分子的相互作用在包括细胞黏附、生长、分化和凋亡在内的多种生物学事件中发挥着关键作用。有证据表明,可能需要这些环境因素进行简洁的相互作用,以引导干细胞分化为成熟的细胞类型并具备相应功能。然而,在体外将这些复杂相互作用整合起来以引导干细胞分化为高度特异性表型的具体过程仍广为人知之甚少,尤其是在可植入生物材料的背景下。在本研究中,我们基于一种简单的高压二氧化碳方法和家蚕茧丝的结构蛋白丝素蛋白(SF)制备了可调谐水凝胶。改变SF蛋白起始水溶液浓度会产生具有不同硬度的水凝胶,同时保留诸如基质孔径和β-折叠结晶度等关键结构参数。为了进一步解析化学信号与基质特性之间的复杂相互作用,我们选择研究三维水凝胶硬度和转化生长因子(TGF-β1)的作用,目的是关联其对人间充质干细胞血管定向分化的影响。我们的数据显示,通过采用适当的基质硬度和生长因子(在72小时内),有上调人间充质干细胞成熟血管平滑肌细胞表型(肌球蛋白重链表达)的潜力。总体而言,我们的观察结果表明,细胞微环境中的化学和物理刺激是参与人间充质干细胞命运决定的紧密耦合系统。制备具有生物相容性且能进一步专门模拟组织特异性微环境的可调谐支架材料,对未来的组织工程平台将具有重要价值。

重要性声明

本文研究了丝素蛋白水凝胶硬度和转化生长因子(TGF-β1)的作用,目的是关联其对人间充质干细胞血管定向分化的影响。具体而言,我们证明了通过采用适当的基质硬度和生长因子(在72小时内)可上调人间充质干细胞成熟血管平滑肌细胞表型(肌球蛋白重链表达)。此外,我们展示了利用丝素蛋白调节硬度和生长因子来引导人间充质干细胞定向分化的潜力,丝素蛋白是一种耐受性良好且特性明确的生物材料,在组织工程应用方面有着出色表现。总之,我们的研究强化了这样一个事实,即通过在多个尺度上构建细胞微环境,即基质硬度与生长因子,可简化复杂的分化方案。

相似文献

2
3
Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells.
Acta Biomater. 2020 Mar 15;105:68-77. doi: 10.1016/j.actbio.2020.01.034. Epub 2020 Jan 23.
4
Optimization strategies for electrospun silk fibroin tissue engineering scaffolds.
Biomaterials. 2009 Jun;30(17):3058-67. doi: 10.1016/j.biomaterials.2009.01.054. Epub 2009 Feb 23.
5
Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering.
J Biomed Mater Res B Appl Biomater. 2020 Jul;108(5):2041-2062. doi: 10.1002/jbm.b.34544. Epub 2019 Dec 24.
7
Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
Biomacromolecules. 2010 Nov 8;11(11):3178-88. doi: 10.1021/bm1010504. Epub 2010 Oct 13.
8
Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
Acta Biomater. 2016 Feb;31:17-32. doi: 10.1016/j.actbio.2015.11.034. Epub 2015 Nov 18.
9
Silk scaffolds with tunable mechanical capability for cell differentiation.
Acta Biomater. 2015 Jul;20:22-31. doi: 10.1016/j.actbio.2015.04.004. Epub 2015 Apr 7.
10
Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture.
Tissue Eng Part A. 2020 Mar;26(5-6):358-370. doi: 10.1089/ten.TEA.2019.0199.

引用本文的文献

1
Revealing the promising era of silk-based nanotherapeutics: a ray of hope for chronic wound healing treatment.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jun;398(6):6617-6641. doi: 10.1007/s00210-024-03761-w. Epub 2025 Jan 31.
3
The challenges and prospects of smooth muscle tissue engineering.
Regen Med. 2024 Mar;19(3):135-143. doi: 10.2217/rme-2023-0230. Epub 2024 Mar 5.
4
A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine.
Comput Struct Biotechnol J. 2023 Oct 10;21:4868-4886. doi: 10.1016/j.csbj.2023.10.012. eCollection 2023.
5
7
Smooth Muscle Heterogeneity and Plasticity in Health and Aortic Aneurysmal Disease.
Int J Mol Sci. 2023 Jul 20;24(14):11701. doi: 10.3390/ijms241411701.
8
Keratose Hydrogel Drives Differentiation of Cardiac Vascular Smooth Muscle Progenitor Cells: Implications in Ischemic Treatment.
Stem Cell Rev Rep. 2023 Oct;19(7):2341-2360. doi: 10.1007/s12015-023-10574-6. Epub 2023 Jul 1.
10
Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation.
Int J Mol Sci. 2022 Dec 19;23(24):16185. doi: 10.3390/ijms232416185.

本文引用的文献

1
Silk Hydrogels of Tunable Structure and Viscoelastic Properties Using Different Chronological Orders of Genipin and Physical Cross-Linking.
ACS Appl Mater Interfaces. 2015 Jun 10;7(22):12099-108. doi: 10.1021/acsami.5b02308. Epub 2015 May 27.
2
The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship.
Matrix Biol. 2015 Sep;47:54-65. doi: 10.1016/j.matbio.2015.05.006. Epub 2015 May 8.
3
Interplay of matrix stiffness and protein tethering in stem cell differentiation.
Nat Mater. 2014 Oct;13(10):979-87. doi: 10.1038/nmat4051. Epub 2014 Aug 10.
5
Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.
Tissue Eng Part A. 2014 Sep;20(17-18):2503-12. doi: 10.1089/ten.TEA.2013.0249. Epub 2014 May 9.
6
Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing.
Science. 2014 Feb 21;343(6173):885-8. doi: 10.1126/science.1247663.
7
Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation.
J Orthop Res. 2013 Sep;31(9):1360-5. doi: 10.1002/jor.22374. Epub 2013 Apr 20.
9
Give your heart a chance: match the muscle to the vessel.
Cardiovasc Res. 2013 Apr 1;98(1):1-2. doi: 10.1093/cvr/cvt038. Epub 2013 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验