Floren Michael, Bonani Walter, Dharmarajan Anirudh, Motta Antonella, Migliaresi Claudio, Tan Wei
Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, 38123 Trento, Italy.
Department of Industrial Engineering and Biotech Research Center, University of Trento, via Sommarive 9, 38123 Trento, Italy.
Acta Biomater. 2016 Feb;31:156-166. doi: 10.1016/j.actbio.2015.11.051. Epub 2015 Nov 24.
Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms.
This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we demonstrate the upregulation of mature vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Moreover, we demonstrate the potential to direct specialized hMSC differentiation by modulating stiffness and growth factor using silk fibroin, a well-tolerated and -defined biomaterial with an impressive portfolio of tissue engineering applications. Altogether, our study reinforce the fact that complex differentiation protocols may be simplified by engineering the cellular microenvironment on multiple scales, i.e. matrix stiffness with growth factor.
细胞与基质以及细胞与生物分子的相互作用在包括细胞黏附、生长、分化和凋亡在内的多种生物学事件中发挥着关键作用。有证据表明,可能需要这些环境因素进行简洁的相互作用,以引导干细胞分化为成熟的细胞类型并具备相应功能。然而,在体外将这些复杂相互作用整合起来以引导干细胞分化为高度特异性表型的具体过程仍广为人知之甚少,尤其是在可植入生物材料的背景下。在本研究中,我们基于一种简单的高压二氧化碳方法和家蚕茧丝的结构蛋白丝素蛋白(SF)制备了可调谐水凝胶。改变SF蛋白起始水溶液浓度会产生具有不同硬度的水凝胶,同时保留诸如基质孔径和β-折叠结晶度等关键结构参数。为了进一步解析化学信号与基质特性之间的复杂相互作用,我们选择研究三维水凝胶硬度和转化生长因子(TGF-β1)的作用,目的是关联其对人间充质干细胞血管定向分化的影响。我们的数据显示,通过采用适当的基质硬度和生长因子(在72小时内),有上调人间充质干细胞成熟血管平滑肌细胞表型(肌球蛋白重链表达)的潜力。总体而言,我们的观察结果表明,细胞微环境中的化学和物理刺激是参与人间充质干细胞命运决定的紧密耦合系统。制备具有生物相容性且能进一步专门模拟组织特异性微环境的可调谐支架材料,对未来的组织工程平台将具有重要价值。
本文研究了丝素蛋白水凝胶硬度和转化生长因子(TGF-β1)的作用,目的是关联其对人间充质干细胞血管定向分化的影响。具体而言,我们证明了通过采用适当的基质硬度和生长因子(在72小时内)可上调人间充质干细胞成熟血管平滑肌细胞表型(肌球蛋白重链表达)。此外,我们展示了利用丝素蛋白调节硬度和生长因子来引导人间充质干细胞定向分化的潜力,丝素蛋白是一种耐受性良好且特性明确的生物材料,在组织工程应用方面有着出色表现。总之,我们的研究强化了这样一个事实,即通过在多个尺度上构建细胞微环境,即基质硬度与生长因子,可简化复杂的分化方案。