Suppr超能文献

频域和时域F-ENDOR光谱:核偶极耦合在确定距离分布中的作用。

Frequency and time domain F ENDOR spectroscopy: role of nuclear dipolar couplings to determine distance distributions.

作者信息

Kehl Annemarie, Sielaff Lucca, Remmel Laura, Rämisch Maya L, Bennati Marina, Meyer Andreas

机构信息

Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.

Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany.

出版信息

Phys Chem Chem Phys. 2025 Jan 15;27(3):1415-1425. doi: 10.1039/d4cp04443f.

Abstract

F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood. Here, we employ a combined approach of rational molecular design, frequency and time domain ENDOR methods as well as quantum mechanical spin dynamics simulations to analyze these mechanisms. We present the first application of Fourier transform ENDOR to remove power broadening and measure of the F nucleus. We identify nuclear dipolar couplings between the fluorine and protons up to 14 kHz as a major source of spectral broadening. When removing these interactions by H/D exchange, an unprecedented spectral width of 9 kHz was observed suggesting that, generally, the accessible distance range can be extended. In a spin labeled RNA duplex we were able to predict the spectral ENDOR line width, which in turn enabled us to extract a distance distribution. This study represents a first step towards a quantitative determination of distance distributions in biomolecules from F ENDOR.

摘要

氟电子-核双共振(ENDOR)光谱正逐渐成为一种用于确定生物分子中埃到纳米范围内分子距离的首选方法。然而,F ENDOR光谱中的谱线展宽机制会掩盖编码距离信息的检测到的自旋偶极耦合,从而限制分辨率和可及距离范围。到目前为止,这些机制的起源尚未明确。在此,我们采用合理的分子设计、频域和时域ENDOR方法以及量子力学自旋动力学模拟相结合的方法来分析这些机制。我们展示了傅里叶变换ENDOR在去除功率展宽和测量氟核方面的首次应用。我们确定氟与质子之间高达14千赫兹的核偶极耦合是光谱展宽的主要来源。通过氢/氘交换去除这些相互作用时,观察到了前所未有的9千赫兹光谱宽度,这表明一般来说,可及距离范围可以扩大。在一个自旋标记的RNA双链体中,我们能够预测光谱ENDOR线宽,进而能够提取距离分布。这项研究代表了从F ENDOR定量确定生物分子中距离分布的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8124/11656155/073b135ec717/d4cp04443f-f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验