Suppr超能文献

基于机器学习辅助的肽/MXene 生物电子阵列嗅探癌症。

Smell cancer by machine learning-assisted peptide/MXene bioelectronic array.

机构信息

Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.

Department of Medical Oncology, Peking University First Hospital, Beijing, 100034, China.

出版信息

Biosens Bioelectron. 2024 Oct 15;262:116562. doi: 10.1016/j.bios.2024.116562. Epub 2024 Jul 10.

Abstract

Non-invasive detection of tumors is of utmost importance to save lives. Nonetheless, identifying tumors through gas analysis is a challenging task. In this work, biosensors with remarkable gas-sensing characteristics were developed using a self-assembly method consisting of peptides and MXene. Based on these biosensors, a mimetic biosensor array (MBA) was fabricated and integrated into a real-time testing platform (RTP). In addition, machine learning (ML) algorithms were introduced to improve the RTP's detection and identification capabilities of exhaled gas signals. The synthesized biosensor, with the ability to specifically bind to targeted gas molecules, demonstrated higher performance than the pristine MXene, with a response up to 150% greater. Besides, the MBA successfully detected 15 odor molecules affiliated with five categories of alcohols, ketones, aldehydes, esters, and acids by pattern recognition algorithms. Furthermore, with the ML assistance, the RTP detected the breath odor samples from volunteers of four categories, including healthy populations, patients of lung cancer, upper digestive tract cancer, and lower digestive tract cancer, with accuracies of 100%, 94.1%, 90%, and 95.2%, respectively. In summary, we have developed a cost-effective and precise model for non-invasive tumor diagnosis. Furthermore, this prototype also offers a versatile solution for diagnosing other diseases like nephropathy, diabetes, etc.

摘要

非侵入式肿瘤检测对于挽救生命至关重要。然而,通过气体分析来识别肿瘤是一项具有挑战性的任务。在这项工作中,我们使用一种由肽和 MXene 组成的自组装方法开发了具有出色气体传感特性的生物传感器。基于这些生物传感器,我们构建了一个模拟生物传感器阵列 (MBA),并将其集成到实时测试平台 (RTP) 中。此外,我们还引入了机器学习 (ML) 算法来提高 RTP 对呼气信号的检测和识别能力。合成的生物传感器能够特异性地结合靶向气体分子,其性能比原始 MXene 提高了 150%。此外,MBA 通过模式识别算法成功检测到与五类醇、酮、醛、酯和酸相关的 15 种气味分子。此外,在 ML 的帮助下,RTP 对来自四类志愿者(包括健康人群、肺癌患者、上消化道癌患者和下消化道癌患者)的呼吸气味样本进行了检测,准确率分别为 100%、94.1%、90%和 95.2%。总之,我们开发了一种具有成本效益和精确性的非侵入式肿瘤诊断模型。此外,这个原型还为诊断肾病、糖尿病等其他疾病提供了一种通用的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验