Pashley-Johnson Fred, Munaweera Rangika, Hossain Sheikh I, Gauci Steven C, Delafresnaye Laura, Frisch Hendrik, O'Mara Megan L, Du Prez Filip E, Barner-Kowollik Christopher
School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia.
Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia.
Nat Commun. 2024 Jul 17;15(1):6033. doi: 10.1038/s41467-024-50366-1.
Understanding the intricate relationship between molecular architecture and function underpins most challenges at the forefront of chemical innovation. Bond-forming reactions are particularly influenced by the topology of a chemical structure, both on small molecule scale and in larger macromolecular frameworks. Herein, we elucidate the impact that molecular architecture has on the photo-induced cyclisations of a series of monodisperse macromolecules with defined spacers between photodimerisable moieties, and examine the relationship between propensity for intramolecular cyclisation and intermolecular network formation. We demonstrate a goldilocks zone of maximum reactivity between the sterically hindered and entropically limited regimes with a quantum yield of intramolecular cyclisation that is nearly an order of magnitude higher than the lowest value. As a result of the molecular design of trifunctional macromolecules, their quantum yields can be deconvoluted into the formation of two different cyclic isomers, as rationalised with molecular dynamics simulations. Critically, we visualise our solution-based studies with light-based additive manufacturing. We formulate four photoresists for microprinting, revealing that the precise positioning of functional groups is critical for resist performance, with lower intramolecular quantum yields leading to higher-quality printing in most cases.
理解分子结构与功能之间的复杂关系是化学创新前沿的大多数挑战的基础。成键反应尤其受到化学结构拓扑结构的影响,无论是在小分子尺度还是在更大的大分子框架中。在此,我们阐明了分子结构对一系列在可光二聚部分之间具有确定间隔基的单分散大分子的光诱导环化的影响,并研究了分子内环化倾向与分子间网络形成之间的关系。我们展示了在空间位阻和熵限制区域之间存在一个反应性最大的“金发姑娘区”,其分子内环化量子产率比最低值高出近一个数量级。由于三官能大分子的分子设计,它们的量子产率可以分解为两种不同环状异构体的形成,这通过分子动力学模拟得到了合理的解释。至关重要的是,我们用基于光的增材制造来可视化我们基于溶液的研究。我们配制了四种用于微打印的光刻胶,结果表明官能团的精确定位对光刻胶性能至关重要,在大多数情况下,较低的分子内量子产率会导致更高质量的打印。