Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
Sci Rep. 2017 Jan 12;7:40643. doi: 10.1038/srep40643.
Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control.
控制材料的热膨胀具有重要的技术意义。不受控制的热膨胀会导致结构和设备的失效或不可逆破坏。在普通晶体中,热膨胀受微观结合势的不对称性控制,这种不对称性不易调节。在称为超材料的人工晶体中,热膨胀可以通过结构来控制。在这里,我们按照先前的理论工作,使用灰度激光光刻技术制造了三维(3D)双组分聚合物微晶格。我们对不同样品温度下拍摄的光学显微镜图像进行了互相关分析。所得的位移矢量场揭示了热膨胀和由此产生的双材料梁的弯曲导致在一个超材料单元内布置在 3D 棋盘图案上的 3D 手性十字的旋转。这些旋转可以补偿所有正组成部分的膨胀,导致有效近零热膨胀系数,或者过度补偿膨胀,导致有效负热膨胀系数。这证明了热膨胀控制达到了惊人的水平。