Wu Xingyu, Ehrmann Katharina, Gan Ching Thye, Leuschel Benjamin, Pashley-Johnson Fred, Barner-Kowollik Christopher
School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4000, Australia.
Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
Adv Mater. 2025 Apr;37(13):e2419639. doi: 10.1002/adma.202419639. Epub 2025 Feb 17.
Multi-material printing has experienced critical advances in recent years, yet material property differentiation capabilities remain limited both with regard to the accessible properties - typically hard versus soft - and the achievable magnitude of differentiation. To enhance multi-material printing capabilities, precise photochemical control during 3D printing is essential. Wavelength-differentiation is a particularly intriguing concept yet challenging to implement. Notably, dual-wavelength printing to fabricate hard and soft sections within one object has emerged, where one curing process is insensitive to visible light, while UV irradiation inevitably activates the entire resin, limiting true spatio-temporal control of the material properties. Until now, pathway-independent wavelength-orthogonal printing has not been realized, where each wavelength exclusively triggers only one of two possible reactions, independent of the order in which the wavelengths are applied. Herein, a multi-wavelength printing technique is introduced employing a tunable laser to monochromatically deliver light to the printing platform loaded with a fully wavelength-orthogonal resin. Guided by photochemical action plots, two distinct wavelengths - each highly selective toward a specific photocycloaddtion reaction - are utilized to generate distinct networks within the photoresin. Ultimately, together with the printing technique, this orthogonally addressable photoresin allows fabricating multi-material objects with degradable and non-degradable properties, in a single fabrication step.
近年来,多材料打印取得了重大进展,然而,在可获取的材料属性(通常是硬材料与软材料)以及可实现的属性差异程度方面,材料属性区分能力仍然有限。为了提高多材料打印能力,3D打印过程中的精确光化学控制至关重要。波长区分是一个特别引人关注的概念,但实施起来具有挑战性。值得注意的是,已经出现了用于在一个物体内制造硬区和软区的双波长打印技术,但其中一种固化过程对可见光不敏感,而紫外线照射不可避免地会激活整个树脂,从而限制了对材料属性的真正时空控制。到目前为止,尚未实现与路径无关的波长正交打印,即每个波长仅专门触发两种可能反应中的一种,而与波长应用顺序无关。在此,介绍一种多波长打印技术,该技术采用可调谐激光器将单色光传输到装载有完全波长正交树脂的打印平台。在光化学作用图的指导下,利用两个不同的波长(每个波长对特定的光环加成反应具有高度选择性)在光致树脂内生成不同的网络。最终,与打印技术一起,这种可正交寻址的光致树脂能够在单个制造步骤中制造出具有可降解和不可降解属性的多材料物体。