Suppr超能文献

由单色激光集成光固化成型设备(Mono LISA)实现的基于单一波长正交光致树脂的两种材料特性。

Two Material Properties from One Wavelength-Orthogonal Photoresin Enabled by a Monochromatic Laser Integrated Stereolithographic Apparatus (Mono LISA).

作者信息

Wu Xingyu, Ehrmann Katharina, Gan Ching Thye, Leuschel Benjamin, Pashley-Johnson Fred, Barner-Kowollik Christopher

机构信息

School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4000, Australia.

Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

出版信息

Adv Mater. 2025 Apr;37(13):e2419639. doi: 10.1002/adma.202419639. Epub 2025 Feb 17.

Abstract

Multi-material printing has experienced critical advances in recent years, yet material property differentiation capabilities remain limited both with regard to the accessible properties - typically hard versus soft - and the achievable magnitude of differentiation. To enhance multi-material printing capabilities, precise photochemical control during 3D printing is essential. Wavelength-differentiation is a particularly intriguing concept yet challenging to implement. Notably, dual-wavelength printing to fabricate hard and soft sections within one object has emerged, where one curing process is insensitive to visible light, while UV irradiation inevitably activates the entire resin, limiting true spatio-temporal control of the material properties. Until now, pathway-independent wavelength-orthogonal printing has not been realized, where each wavelength exclusively triggers only one of two possible reactions, independent of the order in which the wavelengths are applied. Herein, a multi-wavelength printing technique is introduced employing a tunable laser to monochromatically deliver light to the printing platform loaded with a fully wavelength-orthogonal resin. Guided by photochemical action plots, two distinct wavelengths - each highly selective toward a specific photocycloaddtion reaction - are utilized to generate distinct networks within the photoresin. Ultimately, together with the printing technique, this orthogonally addressable photoresin allows fabricating multi-material objects with degradable and non-degradable properties, in a single fabrication step.

摘要

近年来,多材料打印取得了重大进展,然而,在可获取的材料属性(通常是硬材料与软材料)以及可实现的属性差异程度方面,材料属性区分能力仍然有限。为了提高多材料打印能力,3D打印过程中的精确光化学控制至关重要。波长区分是一个特别引人关注的概念,但实施起来具有挑战性。值得注意的是,已经出现了用于在一个物体内制造硬区和软区的双波长打印技术,但其中一种固化过程对可见光不敏感,而紫外线照射不可避免地会激活整个树脂,从而限制了对材料属性的真正时空控制。到目前为止,尚未实现与路径无关的波长正交打印,即每个波长仅专门触发两种可能反应中的一种,而与波长应用顺序无关。在此,介绍一种多波长打印技术,该技术采用可调谐激光器将单色光传输到装载有完全波长正交树脂的打印平台。在光化学作用图的指导下,利用两个不同的波长(每个波长对特定的光环加成反应具有高度选择性)在光致树脂内生成不同的网络。最终,与打印技术一起,这种可正交寻址的光致树脂能够在单个制造步骤中制造出具有可降解和不可降解属性的多材料物体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4874/11962704/852ae0a06a11/ADMA-37-2419639-g003.jpg

相似文献

2
Wavelength Selective Multi-Material 3D Printing of Soft Active Devices Using Orthogonal Photoreactions.
Macromol Rapid Commun. 2023 Jan;44(2):e2200586. doi: 10.1002/marc.202200586. Epub 2022 Sep 20.
4
3D Printing of Polydiacetylene Photocomposite Materials: Two Wavelengths for Two Orthogonal Chemistries.
ACS Appl Mater Interfaces. 2020 Jan 8;12(1):1658-1664. doi: 10.1021/acsami.9b19605. Epub 2019 Dec 27.
5
Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity.
Nat Commun. 2024 May 8;15(1):3867. doi: 10.1038/s41467-024-48159-7.
6
Access to Disparate Soft Matter Materials by Curing with Two Colors of Light.
Adv Mater. 2019 Feb;31(8):e1807288. doi: 10.1002/adma.201807288. Epub 2019 Jan 7.
7
Photochemical Action Plots Map Orthogonal Reactivity in Photochemical Release Systems.
Adv Sci (Weinh). 2024 Aug;11(29):e2402011. doi: 10.1002/advs.202402011. Epub 2024 Jun 9.
8
Multimaterial actinic spatial control 3D and 4D printing.
Nat Commun. 2019 Feb 15;10(1):791. doi: 10.1038/s41467-019-08639-7.
9
Wavelength Orthogonal Photodynamic Networks.
Chemistry. 2022 May 2;28(25):e202104466. doi: 10.1002/chem.202104466. Epub 2022 Mar 15.
10
Rapid Continuous 3D Printing via Orthogonal Dual-Color Photoinitiation and Photoinhibition.
3D Print Addit Manuf. 2024 Apr 1;11(2):476-484. doi: 10.1089/3dp.2022.0278. Epub 2024 Apr 16.

引用本文的文献

1
Precision Photochemistry: Every Photon Counts.
Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202502651. doi: 10.1002/anie.202502651. Epub 2025 Aug 4.
2
Catalytically Active Light Printed Microstructures.
Adv Mater. 2025 Aug;37(34):e2506663. doi: 10.1002/adma.202506663. Epub 2025 Jun 6.

本文引用的文献

1
Fast and Efficient Fabrication of Functional Electronic Devices through Grayscale Digital Light Processing 3D Printing.
Adv Mater. 2024 Nov;36(46):e2408774. doi: 10.1002/adma.202408774. Epub 2024 Sep 28.
2
3
How molecular architecture defines quantum yields.
Nat Commun. 2024 Jul 17;15(1):6033. doi: 10.1038/s41467-024-50366-1.
4
Photochemical Action Plots Map Orthogonal Reactivity in Photochemical Release Systems.
Adv Sci (Weinh). 2024 Aug;11(29):e2402011. doi: 10.1002/advs.202402011. Epub 2024 Jun 9.
5
Photochemical Action Plots Reveal Red-shifted Wavelength-dependent Photoproduct Distributions.
Chemistry. 2024 Apr 22;30(23):e202304174. doi: 10.1002/chem.202304174. Epub 2024 Feb 9.
6
Photochemical Action Plots Reveal the Fundamental Mismatch Between Absorptivity and Photochemical Reactivity.
Adv Sci (Weinh). 2024 Jan;11(3):e2306014. doi: 10.1002/advs.202306014. Epub 2023 Nov 8.
8
Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering.
Adv Mater. 2024 Aug;36(34):e2307686. doi: 10.1002/adma.202307686. Epub 2023 Dec 4.
9
Simultaneously recorded photochemical action plots reveal orthogonal reactivity.
Chem Commun (Camb). 2023 Oct 5;59(80):11959-11962. doi: 10.1039/d3cc03777k.
10
3D gradient printing based on digital light processing.
J Mater Chem B. 2023 Sep 27;11(37):8883-8896. doi: 10.1039/d3tb00763d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验