Kruger Dawid D, García Hermenegildo, Primo Ana
Instituto Universitario de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Av. De los Naranjos s/n, València, 46022, Spain.
Adv Sci (Weinh). 2024 Sep;11(35):e2307106. doi: 10.1002/advs.202307106. Epub 2024 Jul 17.
About one decade after the first report on MXenes, these 2D early transition metal carbides or nitrides have become among the best-performing materials in electrode applications related to electrical energy storage devices and power-to-fuels conversion. MXenes are obtained by a top-down approach starting from the appropriate 3D MAX phase that undergoes etching of the A-site metal. Initial etching procedures are based on the use of concentrated HF or the in situ generation of this highly corrosive and poisonous reagent. Etching of the MAX phase is one of the major hurdles limiting the progress of the field. The present review summarizes an alternative, universal, and easily scalable etching procedure based on treating the MAX precursor with a Lewis acid molten salt. The review starts with presenting the current state of the art of the molten salt etching procedure to obtain or modify MXene, followed by a summary of the applications of these MXene samples. The aim of the review is to show the versatility and advantages of molten salt etching in terms of general applicability, control of the surface terminal groups, and uniform deposition of metal nanoparticles, among other features of the procedure.
在关于MXenes的首次报道大约十年后,这些二维早期过渡金属碳化物或氮化物已成为与电能存储设备和功率到燃料转换相关的电极应用中性能最佳的材料之一。MXenes是通过自上而下的方法从适当的3D MAX相开始获得的,该相经历A位金属的蚀刻。最初的蚀刻程序基于使用浓氢氟酸或原位生成这种高腐蚀性和有毒的试剂。MAX相的蚀刻是限制该领域进展的主要障碍之一。本综述总结了一种基于用路易斯酸熔盐处理MAX前驱体的替代、通用且易于扩展的蚀刻程序。综述首先介绍了通过熔盐蚀刻程序获得或改性MXene的当前技术状态,然后总结了这些MXene样品的应用。综述的目的是展示熔盐蚀刻在一般适用性、表面端基控制和金属纳米颗粒均匀沉积等方面的多功能性和优势,以及该程序的其他特点。