Cordier Mathis, Rasti Pejman, Torres Cindy, Rousseau David
Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRAe IRHS, Université d'Angers, Angers, 49000, France.
R&D Artificial Vision and Automation, Vilmorin-Mikado, La Ménitré, 49250, France.
Plant Phenomics. 2024 Jul 17;6:0204. doi: 10.34133/plantphenomics.0204. eCollection 2024.
The use of low-cost depth imaging sensors is investigated to automate plant pathology tests. Spatial evolution is explored to discriminate plant resistance through the hypersensitive reaction involving cotyledon loss. A high temporal frame rate and a protocol operating with batches of plants enable to compensate for the low spatial resolution of depth cameras. Despite the high density of plants, a spatial drop of the depth is observed when the cotyledon loss occurs. We introduce a small and simple spatiotemporal feature space which is shown to carry enough information to automate the discrimination between batches of resistant (loss of cotyledons) and susceptible plants (no loss of cotyledons) with 97% accuracy and with a timing 30 times faster than for human annotation. The robustness of the method-in terms of density of plants in the batch and possible internal batch desynchronization-is assessed successfully with hundreds of varieties of Pepper in various environments. A study on the generalizability of the method suggests that it can be extended to other pathosystems and also to segregating plants, i.e., intermediate state with batches composed of resistant and susceptible plants. The imaging system developed, combined with the feature extraction method and classification model, provides a full pipeline with unequaled throughput and cost efficiency by comparison with the state-of-the-art one. This system can be deployed as a decision-support tool but is also compatible with a standalone technology where computation is done at the edge in real time.
研究了使用低成本深度成像传感器来实现植物病理学测试的自动化。通过涉及子叶损失的过敏反应,探索空间演变以区分植物抗性。高时间帧率和针对多批植物运行的协议能够弥补深度相机低空间分辨率的不足。尽管植物密度很高,但在子叶损失发生时仍观察到深度的空间下降。我们引入了一个小而简单的时空特征空间,该空间被证明携带了足够的信息,能够以97%的准确率自动区分抗性(子叶损失)和易感植物(子叶无损失)批次,且计时比人工标注快30倍。该方法在批次中植物密度和可能的批次内部不同步方面的稳健性,已在各种环境下对数百种辣椒品种进行了成功评估。对该方法通用性的研究表明,它可以扩展到其他病理系统,也可以扩展到分离植物,即由抗性和易感植物组成的批次中的中间状态。与现有技术相比,所开发的成像系统与特征提取方法和分类模型相结合,提供了一个具有无与伦比的通量和成本效益的完整流程。该系统可以部署为决策支持工具,但也与在边缘实时进行计算的独立技术兼容。