文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Survival prediction landscape: an in-depth systematic literature review on activities, methods, tools, diseases, and databases.

作者信息

Abbasi Ahtisham Fazeel, Asim Muhammad Nabeel, Ahmed Sheraz, Vollmer Sebastian, Dengel Andreas

机构信息

Department of Computer Science, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, Germany.

Smart Data & Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern, Germany.

出版信息

Front Artif Intell. 2024 Jul 3;7:1428501. doi: 10.3389/frai.2024.1428501. eCollection 2024.


DOI:10.3389/frai.2024.1428501
PMID:39021434
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11252047/
Abstract

Survival prediction integrates patient-specific molecular information and clinical signatures to forecast the anticipated time of an event, such as recurrence, death, or disease progression. Survival prediction proves valuable in guiding treatment decisions, optimizing resource allocation, and interventions of precision medicine. The wide range of diseases, the existence of various variants within the same disease, and the reliance on available data necessitate disease-specific computational survival predictors. The widespread adoption of artificial intelligence (AI) methods in crafting survival predictors has undoubtedly revolutionized this field. However, the ever-increasing demand for more sophisticated and effective prediction models necessitates the continued creation of innovative advancements. To catalyze these advancements, it is crucial to bring existing survival predictors knowledge and insights into a centralized platform. The paper in hand thoroughly examines 23 existing review studies and provides a concise overview of their scope and limitations. Focusing on a comprehensive set of 90 most recent survival predictors across 44 diverse diseases, it delves into insights of diverse types of methods that are used in the development of disease-specific predictors. This exhaustive analysis encompasses the utilized data modalities along with a detailed analysis of subsets of clinical features, feature engineering methods, and the specific statistical, machine or deep learning approaches that have been employed. It also provides insights about survival prediction data sources, open-source predictors, and survival prediction frameworks.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/81f12c31a024/frai-07-1428501-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/5313eef46f36/frai-07-1428501-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/bcabc0ba021a/frai-07-1428501-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/d0f28671457f/frai-07-1428501-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/55a54edc8f2b/frai-07-1428501-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/41f4c22c4f19/frai-07-1428501-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/1ffabdd5d702/frai-07-1428501-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/ce28ae65eda3/frai-07-1428501-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/2bc10ff6dc1b/frai-07-1428501-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/dba0549b0dfc/frai-07-1428501-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/81f12c31a024/frai-07-1428501-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/5313eef46f36/frai-07-1428501-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/bcabc0ba021a/frai-07-1428501-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/d0f28671457f/frai-07-1428501-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/55a54edc8f2b/frai-07-1428501-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/41f4c22c4f19/frai-07-1428501-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/1ffabdd5d702/frai-07-1428501-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/ce28ae65eda3/frai-07-1428501-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/2bc10ff6dc1b/frai-07-1428501-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/dba0549b0dfc/frai-07-1428501-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d72/11252047/81f12c31a024/frai-07-1428501-g0010.jpg

相似文献

[1]
Survival prediction landscape: an in-depth systematic literature review on activities, methods, tools, diseases, and databases.

Front Artif Intell. 2024-7-3

[2]
Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery.

Cureus. 2023-8-30

[3]
Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion.

Ann Med. 2023

[4]
Embryo selection through artificial intelligence versus embryologists: a systematic review.

Hum Reprod Open. 2023-8-15

[5]
Keratoconus: exploring fundamentals and future perspectives - a comprehensive systematic review.

Ther Adv Ophthalmol. 2024-3-20

[6]
Enhanced cardiovascular disease prediction through self-improved Aquila optimized feature selection in quantum neural network & LSTM model.

Front Med (Lausanne). 2024-6-20

[7]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[8]
Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review.

Cancers (Basel). 2024-5-10

[9]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[10]
Applications of artificial intelligence multiomics in precision oncology.

J Cancer Res Clin Oncol. 2023-1

引用本文的文献

[1]
Visible neural networks for multi-omics integration: a critical review.

Front Artif Intell. 2025-7-17

[2]
DNA sequence analysis landscape: a comprehensive review of DNA sequence analysis task types, databases, datasets, word embedding methods, and language models.

Front Med (Lausanne). 2025-4-8

[3]
RNA sequence analysis landscape: A comprehensive review of task types, databases, datasets, word embedding methods, and language models.

Heliyon. 2025-1-6

本文引用的文献

[1]
A prediction model based on random survival forest analysis of the overall survival of elderly female papillary thyroid carcinoma patients: a SEER-based study.

Endocrine. 2024-9

[2]
survex: an R package for explaining machine learning survival models.

Bioinformatics. 2023-12-1

[3]
GNN-surv: Discrete-Time Survival Prediction Using Graph Neural Networks.

Bioengineering (Basel). 2023-9-6

[4]
Autoencoder-based multimodal prediction of non-small cell lung cancer survival.

Sci Rep. 2023-9-22

[5]
Breast cancer survival prognosis using the graph convolutional network with Choquet fuzzy integral.

Sci Rep. 2023-9-7

[6]
Predicting lung cancer survival based on clinical data using machine learning: A review.

Comput Biol Med. 2023-10

[7]
Paired evaluation of machine-learning models characterizes effects of confounders and outliers.

Patterns (N Y). 2023-7-7

[8]
Improvement of a prediction model for heart failure survival through explainable artificial intelligence.

Front Cardiovasc Med. 2023-8-1

[9]
A review of multi-omics data integration through deep learning approaches for disease diagnosis, prognosis, and treatment.

Front Genet. 2023-7-20

[10]
Development and validation of prediction model for overall survival in patients with lymphoma: a prospective cohort study in China.

BMC Med Inform Decis Mak. 2023-7-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索