Kim So Yeon
Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea.
Department of Software and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea.
Bioengineering (Basel). 2023 Sep 6;10(9):1046. doi: 10.3390/bioengineering10091046.
Survival prediction models play a key role in patient prognosis and personalized treatment. However, their accuracy can be improved by incorporating patient similarity networks, which uncover complex data patterns. Our study uses Graph Neural Networks (GNNs) to enhance discrete-time survival predictions (GNN-surv) by leveraging relationships in these networks. We build these networks using cancer patients' genomic and clinical data and train various GNN models on them, integrating Logistic Hazard and PMF survival models. GNN-surv models exhibit superior performance in survival prediction across two urologic cancer datasets, outperforming traditional MLP models. They maintain robustness and effectiveness under varying graph construction hyperparameter μ values, with performance boosts of up to 14.6% and 7.9% in the time-dependent concordance index and reductions in the integrated brier score of 26.7% and 24.1% in the BLCA and KIRC datasets, respectively. Notably, these models also maintain their effectiveness across three different types of GNN models, suggesting potential adaptability to other cancer datasets. The superior performance of our GNN-surv models underscores their wide applicability in the fields of oncology and personalized medicine, providing clinicians with a more accurate tool for patient prognosis and personalized treatment planning. Future studies can further optimize these models by incorporating other survival models or additional data modalities.
生存预测模型在患者预后和个性化治疗中起着关键作用。然而,通过纳入患者相似性网络可以提高其准确性,这些网络能够揭示复杂的数据模式。我们的研究使用图神经网络(GNN),通过利用这些网络中的关系来增强离散时间生存预测(GNN-surv)。我们利用癌症患者的基因组和临床数据构建这些网络,并在其上训练各种GNN模型,整合逻辑风险和概率质量函数生存模型。GNN-surv模型在两个泌尿系统癌症数据集中的生存预测方面表现出卓越的性能,优于传统的多层感知器(MLP)模型。在不同的图构建超参数μ值下,它们保持稳健性和有效性,在BLCA和KIRC数据集中,时间依赖一致性指数的性能提升分别高达14.6%和7.9%,综合布里尔分数分别降低26.7%和24.1%。值得注意的是,这些模型在三种不同类型的GNN模型中也保持其有效性,表明对其他癌症数据集具有潜在的适应性。我们的GNN-surv模型的卓越性能凸显了它们在肿瘤学和个性化医学领域的广泛适用性,为临床医生提供了一个更准确的患者预后和个性化治疗规划工具。未来的研究可以通过纳入其他生存模型或额外的数据模式来进一步优化这些模型。