Suppr超能文献

在中国开展的前瞻性队列研究:用于预测淋巴瘤患者总生存期的预测模型的建立与验证。

Development and validation of prediction model for overall survival in patients with lymphoma: a prospective cohort study in China.

机构信息

Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, 400030, China.

Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.

出版信息

BMC Med Inform Decis Mak. 2023 Jul 17;23(1):125. doi: 10.1186/s12911-023-02198-0.

Abstract

OBJECTIVE

The survival of patients with lymphoma varies greatly among individuals and were affected by various factors. The aim of this study was to develop and validate a prognostic model for predicting overall survival (OS) in patients with lymphoma.

METHODS

We conducted a prospective longitudinal cohort study in China between January 2014 and December 2018 (n = 1,594). After obtaining the follow-up data, we randomly split the cohort into the training cohort (n = 1,116) and the validation cohort (n = 478). The least absolute shrinkage and selection operator (LASSO) regression analysis was used to select the predictors of the model. Cox stepwise regression analysis was used to identify independent prognostic factors, which were finally displayed as static nomogram and web-based dynamic nomogram. We calculated the concordance index(C-index) to describe how the predicted survival of objectively confirmed prognosis. The calibration plot is used to evaluate the prediction accuracy and discrimination ability of the model. Net reclassification index (NRI) and decision curve analysis (DCA) curves were also used to evaluate the prediction ability and net benefit of the model.

RESULTS

Nine variables in the training cohort were considered to be independent risk factors for patients with lymphoma in the final model: age, Ann Arbor Stage, pathologic type, B symptoms, chemotherapy, targeted therapy, lactate dehydrogenase (LDH), β2-microglobulin and C-reactive protein (CRP). The C-indices of OS were 0.749 (95% CI, 0.729-0.769) in the training cohort and 0.731 (95% CI, 0.762-0.700) in the validation cohort. A good agreement between prediction by nomogram and actual observation was shown in the calibration curve for the probability of survival in both the training cohort and validation cohorts. The areas under curve (AUC) of the area under the receiver operating characteristic (ROC) curves for 1-year, 3-year, and 5-year OS were 0.813, 0.800, and 0.762, respectively, in the training cohort, and 0.802, 0.768, and 0.721, respectively, in the validation cohort. Compared with the Ann Arbor Stage system, NRI and DCA showed that the model had a higher predictive capacity and net benefit.

CONCLUSION

The prediction models reliably estimate the outcome of patients with lymphoma. The model had high discrimination and calibration, which provided a simple and reliable tool for the survival prediction of the patients, and it might help patients benefit from personalized intervention.

摘要

目的

淋巴瘤患者的生存情况存在较大个体差异,受到多种因素的影响。本研究旨在建立并验证一种预测淋巴瘤患者总生存(OS)的预后模型。

方法

我们在中国进行了一项前瞻性纵向队列研究,时间为 2014 年 1 月至 2018 年 12 月(n=1594)。在获得随访数据后,我们将队列随机分为训练队列(n=1116)和验证队列(n=478)。采用最小绝对收缩和选择算子(LASSO)回归分析筛选模型的预测因子。Cox 逐步回归分析用于识别独立的预后因素,最终以静态列线图和基于网络的动态列线图呈现。我们计算了一致性指数(C-index)来描述模型预测的生存与客观确认预后的吻合程度。校准图用于评估模型的预测准确性和区分能力。净重新分类指数(NRI)和决策曲线分析(DCA)曲线也用于评估模型的预测能力和净获益。

结果

在最终模型中,训练队列中的 9 个变量被认为是淋巴瘤患者的独立危险因素:年龄、Ann Arbor 分期、病理类型、B 症状、化疗、靶向治疗、乳酸脱氢酶(LDH)、β2-微球蛋白和 C 反应蛋白(CRP)。OS 的 C-index 在训练队列中为 0.749(95%CI,0.729-0.769),在验证队列中为 0.731(95%CI,0.762-0.700)。校准曲线显示,在训练队列和验证队列中,列线图预测的生存率与实际观察结果之间具有良好的一致性。在训练队列中,1 年、3 年和 5 年 OS 的受试者工作特征(ROC)曲线下面积(AUC)分别为 0.813、0.800 和 0.762,在验证队列中分别为 0.802、0.768 和 0.721。与 Ann Arbor 分期系统相比,NRI 和 DCA 表明该模型具有更高的预测能力和净获益。

结论

该预测模型能够可靠地评估淋巴瘤患者的预后。该模型具有较高的区分度和校准度,为患者的生存预测提供了一种简单可靠的工具,可能有助于患者受益于个性化干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfc/10353114/7d51fa81c610/12911_2023_2198_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验