Suppr超能文献

一种基于蚁群优化的运动员运动行为特征聚类挖掘方法。

A clustering mining method for sports behavior characteristics of athletes based on the ant colony optimization.

作者信息

Yang Dapeng, Wang Junqi, He Jingtang, Zhao Cuiqing

机构信息

College of Physical Education, Huainan Normal University, Huainan, 232038, China.

School of Physical Education and Sport, Henan University, Kaifeng, 475001, China.

出版信息

Heliyon. 2024 Jun 19;10(12):e33297. doi: 10.1016/j.heliyon.2024.e33297. eCollection 2024 Jun 30.

Abstract

This study aims to enhance the precision of analyzing athlete behavior characteristics, thereby optimizing sports training and competitive strategies. This study introduces an innovative Ant Colony Optimization (ACO) clustering model designed to address the high-dimensional clustering issues in athlete behavior data by simulating the path selection mechanism of ants searching for food. The development process of this model includes fine-tuning ACO parameters, optimizing for features specific to sports data, and comparing it with traditional clustering algorithms, and similar research models based on the neural network, support vector machines, and deep learning. The results indicate that the ACO model significantly outperforms the comparison algorithms in terms of silhouette coefficient (0.72) and Davies-Bouldin index (1.05), demonstrating higher clustering effectiveness and model stability. Particularly noteworthy is the recall rate (0.82), a key performance indicator, where the ACO model accurately captures different behavioral characteristics of athletes, validating its effectiveness and reliability in athlete behavior analysis. The innovation lies not only in the application of the ACO algorithm to address practical issues in the field of sports but also in showcasing the advantages of the ACO algorithm in handling complex, high-dimensional sports data. However, its generality and efficiency on a larger scale or different types of sports data still need further validation. In conclusion, through the introduction and optimization of the ACO clustering model, this study provides a novel and effective approach for a deeper understanding and analysis of athlete behavior characteristics. This study holds significant importance in advancing sports science research and practical applications.

摘要

本研究旨在提高分析运动员行为特征的精度,从而优化运动训练和竞赛策略。本研究引入了一种创新的蚁群优化(ACO)聚类模型,旨在通过模拟蚂蚁寻找食物的路径选择机制来解决运动员行为数据中的高维聚类问题。该模型的开发过程包括微调ACO参数、针对体育数据的特定特征进行优化,并将其与传统聚类算法以及基于神经网络、支持向量机和深度学习的类似研究模型进行比较。结果表明,ACO模型在轮廓系数(0.72)和戴维斯-布尔丁指数(1.05)方面显著优于比较算法,显示出更高的聚类有效性和模型稳定性。特别值得注意的是召回率(0.82),这是一个关键性能指标,ACO模型准确地捕捉了运动员的不同行为特征,验证了其在运动员行为分析中的有效性和可靠性。创新之处不仅在于应用ACO算法解决体育领域的实际问题,还在于展示了ACO算法在处理复杂、高维体育数据方面的优势。然而,其在更大规模或不同类型体育数据上的通用性和效率仍需进一步验证。总之,通过引入和优化ACO聚类模型,本研究为更深入地理解和分析运动员行为特征提供了一种新颖有效的方法。本研究在推进体育科学研究和实际应用方面具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b6a/11252961/91f968f42fc0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验