Suppr超能文献

使用特征和人体关键点检测算法分析速度攀岩运动员的比赛和训练视频

Analysis of Competition and Training Videos of Speed Climbing Athletes Using Feature and Human Body Keypoint Detection Algorithms.

作者信息

Pandurevic Dominik, Draga Paweł, Sutor Alexander, Hochradel Klaus

机构信息

Institute of Measurement and Sensor Technology, UMIT-Private University for Health Sciences, Medical Informatics and Technology GmbH, 6060 Hall in Tirol, Austria.

出版信息

Sensors (Basel). 2022 Mar 14;22(6):2251. doi: 10.3390/s22062251.

Abstract

Compared to 25 years ago, the climbing sport itself has changed dramatically. From a rock climbing modification to a separation in three independent disciplines, the requirements to athletes and trainers increased rapidly. To ensure continuous improvement of the sport itself, the usage of measurement and sensor technology is unavoidable. Especially in the field of the discipline speed climbing, which will be performed as a single discipline at the Olympic Games 2024 in Paris, the current state of the art of movement analysis only consists of video analysis and the benefit of the experience of trainers. Therefore, this paper presents a novel method, which supports trainers and athletes and enables analysis of motion sequences and techniques. Prerecorded video footage is combined with existing feature and human body keypoint detection algorithms and standardized boundary conditions. Therefore, several image processing steps are necessary to convert the recorded movement of different speed climbing athletes to significant parameters for detailed analysis. By studying climbing trials of professional athletes and the used techniques in different sections of the speed climbing wall, the aim among others is to get comparable results and detect mistakes. As a conclusion, the presented method enables powerful analysis of speed climbing training and competition and serves with the aid of a user-friendly designed interface as a support for trainers and athletes for the evaluation of motion sequences.

摘要

与25年前相比,攀岩运动本身发生了巨大变化。从攀岩的一种形式演变为三个独立的项目,对运动员和教练的要求迅速提高。为确保这项运动本身持续改进,测量和传感器技术的使用不可避免。特别是在速度攀岩领域,该项目将作为一个独立项目在2024年巴黎奥运会上进行,目前运动分析的技术水平仅包括视频分析和教练的经验。因此,本文提出了一种新颖的方法,该方法可为教练和运动员提供支持,并能够分析动作序列和技术。预先录制的视频片段与现有的特征和人体关键点检测算法以及标准化的边界条件相结合。因此,需要几个图像处理步骤,将不同速度攀岩运动员记录的动作转换为用于详细分析的重要参数。通过研究职业运动员的攀岩试验以及速度攀岩墙不同部分所使用的技术,目的之一是获得可比的结果并发现错误。总之,所提出的方法能够对速度攀岩训练和比赛进行有力分析,并借助设计友好的用户界面为教练和运动员评估动作序列提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a6c/8955718/40a54ca74c68/sensors-22-02251-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验