Ahmad Shabir, Becheikh Nidhal, Kolsi Lioua, Muhammad Taseer, Ahmad Zubair, Nasrat Mohammad Khalid
Department of Mathematics, University of Malakand, Chakdara, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
Department of Chemical and Materials Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia.
Sci Rep. 2024 Aug 22;14(1):19485. doi: 10.1038/s41598-024-67116-4.
In this paper, we apply stochastic differential equations with the Wiener process to investigate the soliton solutions of the Chaffee-Infante (CI) equation. The CI equation, a fundamental model in mathematical physics, explains concepts such as wave propagation and diffusion processes. Exact soliton solutions are obtained through the application of the modified extended tanh (MET) method. The obtained wave figures in 3D, 2D, and contour are highly localized and determine an individual frequency shift under the behavior of sharp peak, periodic wave, and singular soliton. The MET method shows to be a valuable analytical tool for obtaining soliton solutions, essential for understanding the dynamics of nonlinear wave phenomena. Numerical simulations enable us to explore soliton solutions in two and three dimensions, shedding light on their properties over time. Our results have wide applications in various domains, including stochastic processes and nonlinear dynamics, impacting advancements in physics, engineering, finance, biology, and beyond.
在本文中,我们应用带有维纳过程的随机微分方程来研究查菲 - 英方特(CI)方程的孤子解。CI方程是数学物理中的一个基本模型,解释了诸如波传播和扩散过程等概念。通过应用改进的扩展双曲正切(MET)方法获得了精确的孤子解。所得到的三维、二维波形图和等高线图具有高度的局域性,并在尖峰、周期波和奇异孤子行为下确定了单个频移。MET方法被证明是获取孤子解的一种有价值的分析工具,对于理解非线性波现象的动力学至关重要。数值模拟使我们能够在二维和三维中探索孤子解,揭示它们随时间的特性。我们的结果在包括随机过程和非线性动力学在内的各个领域都有广泛应用,对物理、工程、金融、生物学及其他领域的进展产生影响。