Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
NanoTemper Technologies, South San Francisco, California, USA.
Protein Sci. 2024 Aug;33(8):e5118. doi: 10.1002/pro.5118.
Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity. We therefore sought to determine which oligomeric species of PRMT1 are physiologically relevant, and quantitatively correlate activity with specific oligomer forms. Through quantitative western blotting, we determined that concentrations of PRMT1 available in a variety of human cell lines are in the sub-micromolar to low micromolar range. Isothermal spectral shift binding data were modeled to a monomer/dimer/tetramer equilibrium with an EC for tetramer dissociation of ~20 nM. A combination of sedimentation velocity and Native polyacrylamide gel electrophoresis experiments directly confirmed that the major oligomeric species of PRMT1 at physiological concentrations would be dimers and tetramers. Surprisingly, the methyltransferase activity of a dimeric PRMT1 variant is similar to wild type, tetrameric PRMT1 with some purified substrates, but dimer and tetramer forms of PRMT1 show differences in catalytic efficiencies and substrate specificity for other substrates. Our results define an oligomerization paradigm for PRMT1, show that the biophysical characteristics of PRMT1 are poised to support a monomer/dimer/tetramer equilibrium in vivo, and suggest that the oligomeric state of PRMT1 could be used to regulate substrate specificity.
蛋白质精氨酸甲基转移酶 1(PRMT1)对适当的蛋白质精氨酸甲基化至关重要,可维持细胞健康,而其失调通常与疾病有关。因此,PRMT1 的活性如何被调控是至关重要的,但目前还不清楚。有几项研究观察到 PRMT1 的高级别寡聚体,但尚不清楚这些寡聚体是否存在于生理浓度下,并且文献中对寡聚化如何影响活性存在混淆。因此,我们试图确定哪些 PRMT1 寡聚体是与生理相关的,并将活性与特定的寡聚形式进行定量关联。通过定量 Western 印迹,我们确定各种人细胞系中可用的 PRMT1 浓度处于亚毫摩尔至低毫摩尔范围内。等温光谱位移结合数据被建模为单体/二聚体/四聚体平衡,四聚体解离的 EC 约为 20 nM。沉降速度和天然聚丙烯酰胺凝胶电泳实验的组合直接证实,生理浓度下 PRMT1 的主要寡聚体形式将是二聚体和四聚体。令人惊讶的是,二聚体 PRMT1 变体的甲基转移酶活性与野生型类似,与一些纯化的底物的四聚体 PRMT1 相似,但 PRMT1 的二聚体和四聚体形式在催化效率和对其他底物的底物特异性方面存在差异。我们的研究结果为 PRMT1 定义了一个寡聚化范例,表明 PRMT1 的生物物理特性适合支持体内单体/二聚体/四聚体平衡,并表明 PRMT1 的寡聚状态可用于调节底物特异性。