Suppr超能文献

向导 RNA 序列决定 Argonaute 沉默复合物的切割动力学和构象动力学。

The guide-RNA sequence dictates the slicing kinetics and conformational dynamics of the Argonaute silencing complex.

机构信息

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Mol Cell. 2024 Aug 8;84(15):2918-2934.e11. doi: 10.1016/j.molcel.2024.06.026. Epub 2024 Jul 17.

Abstract

The RNA-induced silencing complex (RISC), which powers RNA interference (RNAi), consists of a guide RNA and an Argonaute protein that slices target RNAs complementary to the guide. We find that, for different guide-RNA sequences, slicing rates of perfectly complementary bound targets can be surprisingly different (>250-fold range), and that faster slicing confers better knockdown in cells. Nucleotide sequence identities at guide-RNA positions 7, 10, and 17 underlie much of this variation in slicing rates. Analysis of one of these determinants implicates a structural distortion at guide nucleotides 6-7 in promoting slicing. Moreover, slicing directed by different guide sequences has an unanticipated, 600-fold range in 3'-mismatch tolerance, attributable to guides with weak (AU-rich) central pairing requiring extensive 3' complementarity (pairing beyond position 16) to more fully populate the slicing-competent conformation. Together, our analyses identify sequence determinants of RISC activity and provide biochemical and conformational rationale for their action.

摘要

RNA 诱导沉默复合物(RISC)是 RNA 干扰(RNAi)的动力源,由向导 RNA 和 Argonaute 蛋白组成,可将与向导互补的靶 RNA 切割。我们发现,对于不同的向导 RNA 序列,完美互补结合的靶标切割率可能差异惊人(>250 倍),而且更快的切割能在细胞中实现更好的敲低效果。在向导 RNA 位置 7、10 和 17 的核苷酸序列同一性是导致这种切割率差异的主要原因。对其中一个决定因素的分析表明,向导核苷酸 6-7 的结构扭曲有助于促进切割。此外,由不同向导序列指导的切割具有出人意料的 600 倍的 3'-错配容忍度范围,这归因于具有较弱(富含 AU)中心配对的向导需要广泛的 3'互补性(配对超过位置 16),以更充分地填充切割能力构象。总的来说,我们的分析确定了 RISC 活性的序列决定因素,并为它们的作用提供了生化和构象依据。

相似文献

3
C-terminal tagging impairs AGO2 function.C 端标记会损害AGO2的功能。
RNA Biol. 2025 Dec;22(1):1-24. doi: 10.1080/15476286.2025.2534028. Epub 2025 Jul 23.
8
The structural basis for RNA slicing by human Argonaute2.人类AGO2对RNA进行切割的结构基础。
Cell Rep. 2025 Jan 28;44(1):115166. doi: 10.1016/j.celrep.2024.115166. Epub 2024 Dec 31.

引用本文的文献

6
The structural basis for RNA slicing by human Argonaute2.人类AGO2对RNA进行切割的结构基础。
Cell Rep. 2025 Jan 28;44(1):115166. doi: 10.1016/j.celrep.2024.115166. Epub 2024 Dec 31.
7
8
Target cleavage and gene silencing by Argonautes with cityRNAs.Argonautes 通过 cityRNAs 进行靶标切割和基因沉默。
Cell Rep. 2024 Oct 22;43(10):114806. doi: 10.1016/j.celrep.2024.114806. Epub 2024 Oct 4.
9
The structural basis for RNA slicing by human Argonaute2.人类AGO2对RNA进行切割的结构基础。
bioRxiv. 2024 Aug 20:2024.08.19.608718. doi: 10.1101/2024.08.19.608718.

本文引用的文献

1
RNA interference in the era of nucleic acid therapeutics.核酸治疗时代的RNA干扰
Nat Biotechnol. 2024 Mar;42(3):394-405. doi: 10.1038/s41587-023-02105-y. Epub 2024 Feb 26.
2
Relaxed targeting rules help PIWI proteins silence transposons.放松的靶向规则帮助 PIWI 蛋白沉默转座子。
Nature. 2023 Jul;619(7969):394-402. doi: 10.1038/s41586-023-06257-4. Epub 2023 Jun 21.
4
Structural basis for RNA slicing by a plant Argonaute.植物 Argonaute 进行 RNA 切割的结构基础。
Nat Struct Mol Biol. 2023 Jun;30(6):778-784. doi: 10.1038/s41594-023-00989-7. Epub 2023 May 1.
6
MicroRNA turnover: a tale of tailing, trimming, and targets.微小 RNA 的周转:尾巴、修剪和靶标的故事。
Trends Biochem Sci. 2023 Jan;48(1):26-39. doi: 10.1016/j.tibs.2022.06.005. Epub 2022 Jul 7.
10
Structural basis for piRNA targeting.piRNA 靶向作用的结构基础。
Nature. 2021 Sep;597(7875):285-289. doi: 10.1038/s41586-021-03856-x. Epub 2021 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验