Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden.
Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
Nucleic Acids Res. 2024 Oct 28;52(19):11995-12004. doi: 10.1093/nar/gkae744.
Understanding mRNA regulation by microRNA (miR) relies on the structural understanding of the RNA-induced silencing complex (RISC). Here, we elucidate the structural organisation of miR-34a, which is de-regulated in various cancers, in human Argonaute-2 (hAgo2), the effector protein in RISC. This analysis employs guanosine-specific isotopic labelling and dynamic nuclear polarisation (DNP)-enhanced Magic Angle Spinning (MAS) NMR. Homonuclear correlation experiments revealed that the non-A-form helical conformation of miR-34a increases when incorporated into hAgo2 and subsequently bound to SIRT1 mRNA compared to the free miR-34a or the free mRNA:miR duplex. The C8-C1' correlation provided a nucleotide-specific distribution of C2'- and C3'-endo sugar puckering, revealing the capture of diverse dynamic conformations upon freezing. Predominantly C3'-endo puckering was observed for the seed region, while C2'-endo conformation was found in the central region, with a mixture of both conformations elsewhere. These observations provide insights into the molecular dynamics underlying miR-mediated mRNA regulation and demonstrate that experiments conducted under cryogenic conditions, such as at 90 K, can capture and reveal frozen dynamic states, using methods like DNP-enhanced MAS NMR or Cryo-Electron Microscopy.
miRNA(miR)对 mRNA 的调控作用依赖于对 RNA 诱导沉默复合物(RISC)的结构理解。在这里,我们阐明了 miR-34a 的结构组织,miR-34a 在各种癌症中失调。miR-34a 是 RISC 中的效应蛋白人 Argonaute-2(hAgo2)中的。这项分析采用了鸟嘌呤特异性同位素标记和动态核极化(DNP)增强魔角旋转(MAS)NMR。同核相关实验表明,与游离 miR-34a 或游离 mRNA:miR 双链体相比,miR-34a 掺入 hAgo2 并随后与 SIRT1 mRNA 结合时,其非 A 型螺旋构象增加。C8-C1' 相关提供了 C2'-和 C3'-内糖构象的核苷酸特异性分布,揭示了在冻结时捕获的各种动态构象。在种子区域观察到主要的 C3'-内糖构象,而在中央区域发现 C2'-内糖构象,其他区域则存在两种构象的混合物。这些观察结果为 miR 介导的 mRNA 调控的分子动力学提供了深入的了解,并表明在低温条件下(例如在 90 K 下)进行的实验,例如使用 DNP 增强 MAS NMR 或冷冻电子显微镜等方法,可以捕获和揭示冻结的动态状态。