TissUse GmbH, Berlin, Germany.
Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
Commun Biol. 2024 Jul 18;7(1):877. doi: 10.1038/s42003-024-06514-w.
Current research on metabolic disorders and diabetes relies on animal models because multi-organ diseases cannot be well studied with standard in vitro assays. Here, we have connected cell models of key metabolic organs, the pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based in vitro system. Aided by mechanistic mathematical modeling, we demonstrate that hyperglycemia and high cortisone concentration induce glucose dysregulation in the pancreas-liver microphysiological system (MPS), mimicking a diabetic phenotype seen in patients with glucocorticoid-induced diabetes. In this diseased condition, the pancreas-liver MPS displays beta-cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and upregulated gluconeogenic gene expression. Conversely, a physiological culture condition maintains glucose tolerance and beta-cell function. This method was reproducible in two laboratories and was effective in multiple pancreatic islet donors. The model also provides a platform to identify new therapeutic proteins, as demonstrated with a combined transcriptome and proteome analysis.
目前的代谢紊乱和糖尿病研究依赖于动物模型,因为多器官疾病不能很好地通过标准的体外检测来研究。在这里,我们将关键代谢器官的细胞模型,即胰腺和肝脏,连接到微流控芯片上,以在基于人体的体外系统中进行糖尿病研究。借助于机械论数学建模,我们证明了高血糖和高皮质酮浓度会在胰腺-肝脏微生理系统 (MPS) 中引起葡萄糖失调,模拟了皮质激素诱导的糖尿病患者中出现的糖尿病表型。在这种疾病状态下,胰腺-肝脏 MPS 表现出β细胞功能障碍、脂肪变性、酮体分泌增加、糖原储存增加和糖异生基因表达上调。相反,生理培养条件能维持葡萄糖耐量和β细胞功能。该方法在两个实验室中具有重现性,并且对多个胰岛供体有效。该模型还提供了一个平台来识别新的治疗性蛋白质,如通过转录组和蛋白质组联合分析所证明的那样。