Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington (UTA), Arlington, TX, USA.
Sci Rep. 2024 Jul 18;14(1):16631. doi: 10.1038/s41598-024-67500-0.
Spectrin, a large cytoskeletal protein, consists of a heterodimeric structure comprising α and β subunits. Here, we have studied the mechanics of spectrin filament as a major constituent of dendrites and dendritic spines. Given the intricate biological details and compact biological construction of spectrin, we've developed a constitutive model of spectrin that describes its continuous deformation over three distinct stages and it's progressive failure mechanisms. Our model closely predicts both the force at which uncoiling begins and the ultimate force at which spectrin fails, measuring approximately 93 ~ 100 pN. Remarkably, our predicted failure force closely matches the findings from AFM experiments focused on the uncoiling of spectrin repeats, which reported a force of 90 pN. Our theoretical model proposes a plausible pathway for the potential failure of dendrites and the intricate connection between strain and strain rate. These findings deepen our understanding of how spectrin can contribute to traumatic brain injury risk analysis.
血影蛋白是一种大型细胞骨架蛋白,由α和β亚基组成的异二聚体结构组成。在这里,我们研究了作为树突和树突棘主要成分的血影蛋白丝的力学性质。鉴于血影蛋白复杂的生物学细节和紧凑的生物学结构,我们开发了一个描述其在三个不同阶段连续变形及其渐进失效机制的血影蛋白本构模型。我们的模型非常准确地预测了开始解旋的力和血影蛋白失效的最终力,约为 93~100 pN。值得注意的是,我们预测的失效力与专门研究血影蛋白重复解旋的 AFM 实验结果非常吻合,该实验报告的力为 90 pN。我们的理论模型提出了一种可能的途径,用于潜在的树突失效和应变与应变速率之间的复杂关系。这些发现加深了我们对血影蛋白如何有助于创伤性脑损伤风险分析的理解。