Suppr超能文献

基组和假设构建对化学量子计算的影响。

The influence of basis sets and ansatze building to quantum computing in chemistry.

作者信息

Porto Caio M, Nome Rene Alfonso, Morgon Nelson H

机构信息

Institute of Chemistry, Campinas State University, Campinas, 13083-861, São Paulo, Brazil.

出版信息

J Mol Model. 2024 Jul 19;30(8):275. doi: 10.1007/s00894-024-06072-2.

Abstract

CONTEXT

Quantum computing is an exciting area, which has grown at an astonishing rate in the last decade. It is especially promising for the computational and theoretical chemistry area. One algorithm has received a lot of attention lately, the variational quantum eigensolver (VQE). It is used to solve electronic structure problems and it is suitable to the noisy intermediate-scale quantum (NISQ) hardware. VQE calculations require ansatze and one of the most known is the unitary coupled cluster (UCC). It uses the chosen basis set to generate a quantum computing circuit which will be iteratively minimized. The present work investigates the circuit depth and the number of gates as a function of basis sets and molecular size. It has been shown that for the current quantum devices, only the smallest molecules and basis sets are tractable. The H molecule with the cc-pVTZ and aug-cc-pVTZ basis sets have circuit depths in the order of 10 to 10 gates and the C H molecule with 3-21G basis set has a circuit depth of gates. At the same time the analysis demonstrates that the H molecule with STO-3G basis set, requires at least 500 shots to reduce the error and that, although error mitigation schemes can diminish the error, they were not able to completely negate it.

METHODS

The quantum computing and electronic structure calculations were performed using the Qiskit package from IBM and the PySCF package, respectively. The ansatze were generated using the UCCSD method as implemented in Qiskit, using the basis sets STO-3G, 3-21G, 6-311G(d,p), def2-TZVP, cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ. The operators and the Hamiltonian were mapped using the Jordan-Wigner scheme. The classical optimizer chosen was the simultaneous perturbation stochastic approximation (SPSA). The quantum computers used were the Nairobi and Osaka, with 7 and 127 qubits respectively.

摘要

背景

量子计算是一个令人兴奋的领域,在过去十年中以惊人的速度发展。它在计算化学和理论化学领域尤其具有前景。最近一种算法受到了很多关注,即变分量子本征求解器(VQE)。它用于解决电子结构问题,并且适用于有噪声的中等规模量子(NISQ)硬件。VQE计算需要使用近似波函数,其中最著名的之一是酉耦合簇(UCC)。它使用选定的基组来生成一个量子计算电路,该电路将被迭代最小化。目前的工作研究了电路深度和门的数量作为基组和分子大小的函数。结果表明,对于当前的量子设备,只有最小的分子和基组是可处理的。具有cc-pVTZ和aug-cc-pVTZ基组的H₂分子的电路深度在10到10³个门的量级,而具有3-21G基组的C₂H₂分子的电路深度为 个门。同时分析表明,具有STO-3G基组的H₂分子至少需要500次测量来降低误差,并且尽管误差缓解方案可以减少误差,但它们无法完全消除误差。

方法

量子计算和电子结构计算分别使用IBM的Qiskit包和PySCF包进行。使用Qiskit中实现的UCCSD方法生成近似波函数,使用的基组有STO-3G、3-21G、6-311G(d,p)、def2-TZVP、cc-pVDZ、aug-cc-pVDZ、cc-pVTZ和aug-cc-pVTZ。使用约旦-维格纳方案映射算符和哈密顿量。选择的经典优化器是同时扰动随机近似(SPSA)。使用的量子计算机分别是内罗毕号和大阪号,分别有7个和127个量子比特。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验