Ahmadi Narges, Lee Jieun, Godiya Chirag Batukbhai, Kim Jong-Man, Park Bum Jun
Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-Si, Gyeonggi-do, 17104, South Korea.
Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea.
Nat Commun. 2024 Jul 19;15(1):6094. doi: 10.1038/s41467-024-50361-6.
Monitoring mechanical stresses in microchannels is challenging. Herein, we report the development of a mechanofluorescence sensor system featuring a fluorogenic single polydiacetylene (PDA) particle, fabricated using a co-flow microfluidic method. We construct a stenotic vessel-mimicking capillary channel, in which the hydrodynamically captured PDA particle is subjected to controlled fluid flows. Fluorescence responses of the PDA particle are directly monitored in real time using fluorescent microscopy. The PDA particle displays significant nonlinear fluorescence emissions influenced by fluid viscosity and the presence of nanoparticles and biomolecules in the fluid. This nonlinear response is likely attributed to the torsion energy along the PDA's main chain backbone. Computational fluid dynamic simulations indicate that the complete blue-to-red transition necessitates ~307 μJ, aligning with prior research. We believe this study offers a unique advantage for simulating specific problematic regions of the human body in an in vitro environment, potentially paving the way for future exploration of difficult-to-access areas within the body.
监测微通道中的机械应力具有挑战性。在此,我们报告了一种机械荧光传感器系统的开发,该系统具有一种荧光单聚二乙炔(PDA)颗粒,采用共流微流体方法制造。我们构建了一个模拟狭窄血管的毛细管通道,其中通过流体动力学捕获的PDA颗粒受到可控的流体流动作用。使用荧光显微镜实时直接监测PDA颗粒的荧光响应。PDA颗粒显示出受流体粘度以及流体中纳米颗粒和生物分子的存在影响的显著非线性荧光发射。这种非线性响应可能归因于沿PDA主链骨架的扭转能。计算流体动力学模拟表明,从完全蓝色到红色的转变需要约307 μJ的能量,这与先前的研究一致。我们相信这项研究为在体外环境中模拟人体特定问题区域提供了独特优势,可能为未来探索体内难以到达的区域铺平道路。