Suppr超能文献

采用精细化计算流体动力学模拟的狭窄微流道血栓形成的血液动力学分析。

Hemodynamic analysis for stenosis microfluidic model of thrombosis with refined computational fluid dynamics simulation.

机构信息

School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, NSW, 2008, Australia.

Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.

出版信息

Sci Rep. 2021 Mar 25;11(1):6875. doi: 10.1038/s41598-021-86310-2.

Abstract

Disturbed blood flow has been increasingly recognized for its critical role in platelet aggregation and thrombosis. Microfluidics with hump shaped contractions have been developed to mimic microvascular stenosis and recapitulate the prothrombotic effect of flow disturbance. However the physical determinants of microfluidic hemodynamics are not completely defined. Here, we report a refined computational fluid dynamics (CFD) simulation approach to map the shear rate (γ) and wall shear stress (τ) distribution in the stenotic region at high accuracy. Using ultra-fine meshing with sensitivity verification, our CFD results show that the stenosis level (S) is dominant over the bulk shear rate (γ) and contraction angle (α) in determining γ and τ distribution at stenosis. In contrast, α plays a significant role in governing the shear rate gradient (γ) distribution while it exhibits subtle effects on the peak γ. To investigate the viscosity effect, we employ a Generalized Power-Law model to simulate blood flow as a non-Newtonian fluid, showing negligible difference in the γ distribution when compared with Newtonian simulation with water medium. Together, our refined CFD method represents a comprehensive approach to examine microfluidic hemodynamics in three dimensions and guide microfabrication designs. Combining this with hematological experiments promises to advance understandings of the rheological effect in thrombosis and platelet mechanobiology.

摘要

血流紊乱因其在血小板聚集和血栓形成中的关键作用而受到越来越多的关注。采用驼峰状收缩的微流控技术已被开发用于模拟微血管狭窄,并再现血流紊乱的促血栓形成效应。然而,微流控血液动力学的物理决定因素尚未完全定义。在这里,我们报告了一种改进的计算流体动力学 (CFD) 模拟方法,以高精度绘制狭窄区域内的剪切率 (γ) 和壁面剪切应力 (τ) 分布。通过超精细网格和敏感性验证,我们的 CFD 结果表明,在狭窄处,狭窄程度 (S) 比整体剪切率 (γ) 和收缩角 (α) 更能决定 γ 和 τ 的分布。相比之下,α 在控制剪切率梯度 (γ) 分布方面起着重要作用,而对峰值 γ 的影响则很细微。为了研究粘度效应,我们采用广义幂律模型将血流模拟为非牛顿流体,与水介质中的牛顿模拟相比,γ 分布几乎没有差异。总之,我们改进的 CFD 方法代表了一种全面的方法来研究三维微流控血液动力学,并指导微制造设计。将其与血液学实验相结合,有望加深对血栓形成和血小板机械生物学中流变学效应的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c467/7994556/6bf6898a99b2/41598_2021_86310_Fig1_HTML.jpg

相似文献

2
Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
Int J Numer Method Biomed Eng. 2023 Jul;39(7):e3733. doi: 10.1002/cnm.3733. Epub 2023 May 23.
3
The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
Biomech Model Mechanobiol. 2020 Oct;19(5):1477-1490. doi: 10.1007/s10237-019-01282-7. Epub 2020 Jan 2.
5
6
Assessment of boundary conditions for CFD simulation in human carotid artery.
Biomech Model Mechanobiol. 2018 Dec;17(6):1581-1597. doi: 10.1007/s10237-018-1045-4. Epub 2018 Jul 7.
7
Reconstruction of carotid stenosis hemodynamics based on guidewire pressure data and computational modeling.
Med Biol Eng Comput. 2022 May;60(5):1253-1268. doi: 10.1007/s11517-021-02463-2. Epub 2022 Mar 31.
10
Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
J Vasc Surg. 1996 Apr;23(4):667-78. doi: 10.1016/s0741-5214(96)80048-6.

引用本文的文献

2
Applications of microfluidic chip technology in microvascular thrombosis research.
Mikrochim Acta. 2025 May 24;192(6):371. doi: 10.1007/s00604-025-07239-1.
3
Advancing microfluidic point-of-care platelet function tests: opportunities and challenges from bench to market.
Front Bioeng Biotechnol. 2024 Dec 16;12:1507972. doi: 10.3389/fbioe.2024.1507972. eCollection 2024.
4
GPVI-mediated thrombus stabilization of shear-induced platelet aggregates in a microfluidic stenosis.
Biophys J. 2025 Jan 7;124(1):158-171. doi: 10.1016/j.bpj.2024.11.018. Epub 2024 Nov 22.
5
A single-particle mechanofluorescent sensor.
Nat Commun. 2024 Jul 19;15(1):6094. doi: 10.1038/s41467-024-50361-6.
6
Platelet Adhesion and Activation in an ECMO Thrombosis-on-a-Chip Model.
Adv Sci (Weinh). 2024 Aug;11(30):e2401524. doi: 10.1002/advs.202401524. Epub 2024 May 17.
7
Tracking the dynamics of thrombus formation in a blood vessel-on-chip with visible-light optical coherence tomography.
Biomed Opt Express. 2023 Oct 9;14(11):5642-5655. doi: 10.1364/BOE.500434. eCollection 2023 Nov 1.
8
Bio-inspired microfluidics: A review.
Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.
9
Wall Shear Stress Associated with Stroke Occurrence and Mechanisms in Middle Cerebral Artery Atherosclerosis.
J Stroke. 2023 Jan;25(1):132-140. doi: 10.5853/jos.2022.02754. Epub 2023 Jan 31.
10
A Novel Computational Biomechanics Framework to Model Vascular Mechanopropagation in Deep Bone Marrow.
Adv Healthc Mater. 2023 Mar;12(8):e2201830. doi: 10.1002/adhm.202201830. Epub 2023 Jan 8.

本文引用的文献

1
Evaluating medical device and material thrombosis under flow: current and emerging technologies.
Biomater Sci. 2020 Nov 7;8(21):5824-5845. doi: 10.1039/d0bm01284j. Epub 2020 Oct 12.
2
Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine.
Stroke Vasc Neurol. 2020 Jun;5(2):185-197. doi: 10.1136/svn-2019-000302. Epub 2019 Dec 15.
3
Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.
Circulation. 2020 Mar 3;141(9):e139-e596. doi: 10.1161/CIR.0000000000000757. Epub 2020 Jan 29.
4
The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
Biomech Model Mechanobiol. 2020 Oct;19(5):1477-1490. doi: 10.1007/s10237-019-01282-7. Epub 2020 Jan 2.
5
Occlusive thrombosis in arteries.
APL Bioeng. 2019 Nov 19;3(4):041502. doi: 10.1063/1.5115554. eCollection 2019 Dec.
6
Shear-Dependent Platelet Aggregation: Mechanisms and Therapeutic Opportunities.
Front Cardiovasc Med. 2019 Sep 20;6:141. doi: 10.3389/fcvm.2019.00141. eCollection 2019.
7
Dynamic bonds and their roles in mechanosensing.
Curr Opin Chem Biol. 2019 Dec;53:88-97. doi: 10.1016/j.cbpa.2019.08.005. Epub 2019 Sep 27.
8
An integrin αβ intermediate affinity state mediates biomechanical platelet aggregation.
Nat Mater. 2019 Jul;18(7):760-769. doi: 10.1038/s41563-019-0323-6. Epub 2019 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验